access icon free Comparison of different entropies as features for person authentication based on EEG signals

Person authentication is an important part to protect individual privacy in the informational society. With the development of electroencephalogram (EEG), it gradually becomes feasible using EEG signals to identify person recognition. However, the analysis of EEG signals is complex, unstable and non-linear. With this fact, non-linear analysis such as entropy would be more appropriate. In this study, four types of entropies are used to extract EEG signals features for the purpose of person authentication, and the performance of person authentication based on different entropies is compared. In this study, self-face and non-self-face images are used to induce EEG signals for the authentication process. Eventually, the average accuracy of 16 subjects by jackknife test was 90.7%, which demonstrating its better authentication performance and the proposed method achieving higher performance compared with previous methods of EEG-based person authentication. The results also show that, though the four types of entropies were used as the feature extraction methods, the fuzzy entropy achieved the best performance for person authentication.

Inspec keywords: feature extraction; medical signal processing; electroencephalography

Other keywords: person authentication; protect individual privacy; authentication process; electroencephalogram; different entropies; informational society; feature extraction methods; nonlinear analysis; EEG signals

Subjects: Signal processing and detection; Digital signal processing; Biology and medical computing; Electrodiagnostics and other electrical measurement techniques; Bioelectric signals

References

    1. 1)
      • 27. Kumari, P., Vaish, A.: ‘Information-theoretic measures on intrinsic mode function for the individual identification using EEG sensors’, IEEE Sens. J., 2015, 15, (9), pp. 49504960.
    2. 2)
      • 16. Del Pozo-Banos, M., Alonso, J.B., Ticay-Rivas, J.R., et al: ‘Electroencephalogram subject identification: a review’, Expert Syst. Appl., 2014, 41, pp. 65376554.
    3. 3)
      • 24. La Rocca, D., Campisi, P., Vegso, B., et al: ‘Human brain distinctiveness based on EEG spectral coherence connectivity’, IEEE Trans. Biomed. Eng., 2014, 61, (9), pp. 24062412.
    4. 4)
      • 11. Del Pozo-Banos, M., Travieso, C.M., Weidemann, C.T., et al: ‘EEG biometric identification: a thorough exploration of the time–frequency domain’, J. Neural Eng., 2015, 12, (5), pp. 123.
    5. 5)
      • 40. Richman, J.S., Moorman, J.R.: ‘Physiological time-series analysis using approximate entropy and sample entropy’, Am. J. Physiol. Heart Circ. Physiol., 2000, 278, pp. 20392049.
    6. 6)
      • 41. Chen, W., Wang, Z., Xie, H., et al: ‘Characterization of surface EMG signal based on fuzzy entropy’, IEEE Trans. Neural Syst. Rehabil. Eng., 2007, 15, pp. 266272.
    7. 7)
      • 23. Poulos, M., Rangoussi, M., Alexandris, N.: ‘Neural network based person identification using EEG features’. Proc. of the IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, 1999.
    8. 8)
      • 13. Sanei, S., Chambers, J.A.: ‘EEG signal processing’ (John Wiley & Sons, 2013).
    9. 9)
      • 26. Rodrigues, D., Silva, G.F.A., Papa, J.P., et al: ‘EEG-based person identification through binary flower pollination algorithm’, Expert Syst. Appl., 2016, 62, pp. 8190.
    10. 10)
      • 8. Boulgouris, N.V., Konstantinos, N.P., Evangelia, M.-T.: ‘Biometrics: theory, methods, and applications’ (John Wiley & Sons, 2009).
    11. 11)
      • 22. Paranjape, R.B., Mahovsky, J., Benedicenti, L., et al: ‘The electroencephalogram as a biometric’. Canadian Conf. on Electrical & Computer Engineering, 2001.
    12. 12)
      • 19. Hu, J.F.: ‘New biometric approach based on motor imagery EEG signals’. Proc. of the Int. Conf. on Future BioMedical Information Engineering, 2009.
    13. 13)
      • 3. Kumar, S.P., Sriraam, N., Benakop, P.G., et al: ‘Entropies based detection of epileptic seizures with artificial neural network classifiers’, Expert Syst. Appl., 2010, 37, pp. 32843291.
    14. 14)
      • 30. Dauwels, J., Vialatte, F., Cichocki, A.: ‘Diagnosis of alzheimer's disease from EEG signals: where are we standing?’, Curr. Alzheimer Res., 2010, 7, pp. 487505.
    15. 15)
      • 5. Song, Y., Crowcroft, J., Zhang, J.: ‘Automatic epileptic seizure detection in EEGs based on optimized sample entropy and extreme learning machine’, J. Neurosci. Methods, 2012, 210, pp. 132146.
    16. 16)
      • 2. Yun, K., Park, H.K., Kwon, D.H., et al: ‘Decreased cortical complexity in methamphetamine abusers’, Psychiatry Res., 2012, 201, pp. 226232.
    17. 17)
      • 9. Pham, T., Ma, W., Tran, D., et al: ‘A study on the feasibility of using EEG signals for authentication purpose’, Neural Inf. Process., 2013, 8227, pp. 562569.
    18. 18)
      • 36. Phung, D., Tran, D., Ma, W., et al: ‘Using Shannon entropy as EEG signal feature for fast person identification’. European Symp. on Artificial Neural Networks, 2014.
    19. 19)
      • 10. Yang, S., Deravi, F.: ‘Novel HHT-based features for biometric identification using EEG signals’. Int. Conf. on Pattern Recognition, 2014, pp. 19221927.
    20. 20)
      • 21. Yeom, S.K., Suk, H.I., Lee, S.W.: ‘Person authentication from neural activity of face-specific visual self-representation’, Pattern Recognit., 2013, 46, (4), pp. 11591169.
    21. 21)
      • 29. Blasco, J.S., Iáñez, E., Ubeda, A., et al: ‘Visual evoked potential-based brain–machine interface applications to assist disabled people’, Expert Syst. Appl., 2012, 39, pp. 79087918.
    22. 22)
      • 31. Wang, S., Wu, G., Zhu, Y.: ‘Analysis of affective effects on steady-state visual evoked potential responses’, Intell. Auton. Syst., 2013, 12, pp. 757766.
    23. 23)
      • 32. Mousa, M.F., Cubbidge, R.P., Al-Mansouri, F., et al: ‘Evaluation of hemifield sector analysis protocol in multifocal visual evoked potential objective perimetry for the diagnosis and early detection of glaucomatous field defects’, Korean J. Ophthalmol., 2014, 28, (1), pp. 4965.
    24. 24)
      • 33. Abo-Zahhad, M., Ahmed, S.M., Abbas, S.N.: ‘A new multi-level approach to EEG based human authentication using eye blinking’, Pattern Recognit. Lett., 2015, 82, pp. 110.
    25. 25)
      • 38. Shannon, C.E.: ‘A mathematical theory of communication’, ACM SIGMOBILE Mob. Comput. Commun. Rev., 2001, 5, pp. 355.
    26. 26)
      • 6. Zaylaa, A.J., Harb, A., Khatib, F.I., et al: ‘Entropy complexity analysis of electroencephalographic signals during pre-ictal, seizure and post-ictal brain events’. Int. Conf. on Advances in Biomedical Engineering, 2015, pp. 134137.
    27. 27)
      • 42. Chen, W., Zhuang, J., Yu, W., et al: ‘Measuring complexity using FuzzyEn, ApEn, and SampEn’, Med. Eng. Phys., 2009, 31, pp. 6168.
    28. 28)
      • 17. Palaniappan, R., Raveendran, P.: ‘Individual identification technique using visual evoked potential signals’, Electron. Lett., 2002, 38, pp. 16341635.
    29. 29)
      • 25. Xiao, D., Hu, J.F.: ‘Identification of motor imagery EEG signal’. Proc. of the Int. Conf. on Biomedical Engineering and Computer Science, 2010.
    30. 30)
      • 34. Hu, J., Xiao, D., Mu, Z.: ‘Application of energy entropy in motor imagery EEG classification’, Int. J. Digit. Content Technol. Appl., 2009, 3, (2), pp. 8390.
    31. 31)
      • 18. Hu, J.F., Mu, Z.D., Wang, P.: ‘Multi-feature authentication system based on event evoked electroencephalogram’, J. Med. Imaging Health Inf., 2015, 5, (4), pp. 862870.
    32. 32)
      • 15. Phung, D., Tran, D., Ma, W., et al: ‘Conditional entropy approach to multichannel EEG-based person identification’. Int. Joint Conf., Advances in Intelligent Systems and Computing, 2015.
    33. 33)
      • 43. Hua, S., Sun, Z.: ‘Support vector machine approach for protein subcellular localization prediction’, Bioinformatics, 2001, 17, (8), pp. 721728.
    34. 34)
      • 20. Liew, S.H., Choo, Y.H., Low, Y.F., et al: ‘Identifying visual evoked potential (VEP) electrodes setting for person authentication’, Int. J. Adv. Soft Comput. Appl., 2015, 7, (3), pp. 8599.
    35. 35)
      • 4. Sharma, R., Pachori, R.B., Acharya, U.R.: ‘Application of entropy measures on intrinsic mode functions for the automated identification of self-photo electroencephalogram signals’, Entropy, 2015, 17, pp. 669691.
    36. 36)
      • 7. Bhattacharyya, D., Ranjan, R., Farkhod Alisherov, A., et al: ‘Biometric authentication: a review’, Int. J. u-and e-Serv. Sci. Technol., 2009, 2, pp. 1328.
    37. 37)
      • 37. Kannathal, N., Choo, M.L., Acharya, U.R., et al: ‘Entropies for detection of epilepsy in EEG’, Comput. Methods Programs Biomed., 2005, 80, pp. 187194.
    38. 38)
      • 12. Mao, C., Hu, B., Wang, M., et al: ‘EEG-based biometric identification using local probability centers’. Int. Joint Conf. on Neural Networks, 2015.
    39. 39)
      • 14. Marcel, S., Del Millan, J.R.: ‘Person authentication using brainwaves (EEG) and maximum a posteriori model adaptation’, IEEE Trans. Pattern Anal. Mach. Intell., 2007, 29, pp. 743752.
    40. 40)
      • 35. Hu, J.F.: ‘Biometric system based on EEG signals by feature combination’. Int. Conf. on Measuring Technology and Mechatronics Automation, 2010.
    41. 41)
      • 1. Azarnoosh, M., Nasrabadi, A.M., Mohammadi, M.R., et al: ‘Investigation of mental fatigue through EEG signal processing based on nonlinear analysis: symbolic dynamics’, Chaos Solitons Fractals, 2011, 44, pp. 10541062.
    42. 42)
      • 28. Das, R., Maiorana, E., La Rocca, D., et al: ‘EEG biometrics for user recognition using visually evoked potentials’. Int. Conf. of the IEEE, Biometrics Special Interest Group, 2015.
    43. 43)
      • 39. Pincus, S.M.: ‘Approximate entropy as a measure of system complexity’, Proc. Natl. Acad. Sci., 1991, 88, pp. 22972301.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2016.0144
Loading

Related content

content/journals/10.1049/iet-bmt.2016.0144
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading