http://iet.metastore.ingenta.com
1887

Comparison of different entropies as features for person authentication based on EEG signals

Comparison of different entropies as features for person authentication based on EEG signals

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Person authentication is an important part to protect individual privacy in the informational society. With the development of electroencephalogram (EEG), it gradually becomes feasible using EEG signals to identify person recognition. However, the analysis of EEG signals is complex, unstable and non-linear. With this fact, non-linear analysis such as entropy would be more appropriate. In this study, four types of entropies are used to extract EEG signals features for the purpose of person authentication, and the performance of person authentication based on different entropies is compared. In this study, self-face and non-self-face images are used to induce EEG signals for the authentication process. Eventually, the average accuracy of 16 subjects by jackknife test was 90.7%, which demonstrating its better authentication performance and the proposed method achieving higher performance compared with previous methods of EEG-based person authentication. The results also show that, though the four types of entropies were used as the feature extraction methods, the fuzzy entropy achieved the best performance for person authentication.

References

    1. 1)
      • M. Azarnoosh , A.M. Nasrabadi , M.R. Mohammadi .
        1. Azarnoosh, M., Nasrabadi, A.M., Mohammadi, M.R., et al: ‘Investigation of mental fatigue through EEG signal processing based on nonlinear analysis: symbolic dynamics’, Chaos Solitons Fractals, 2011, 44, pp. 10541062.
        . Chaos Solitons Fractals , 1054 - 1062
    2. 2)
      • K. Yun , H.K. Park , D.H. Kwon .
        2. Yun, K., Park, H.K., Kwon, D.H., et al: ‘Decreased cortical complexity in methamphetamine abusers’, Psychiatry Res., 2012, 201, pp. 226232.
        . Psychiatry Res. , 226 - 232
    3. 3)
      • S.P. Kumar , N. Sriraam , P.G. Benakop .
        3. Kumar, S.P., Sriraam, N., Benakop, P.G., et al: ‘Entropies based detection of epileptic seizures with artificial neural network classifiers’, Expert Syst. Appl., 2010, 37, pp. 32843291.
        . Expert Syst. Appl. , 3284 - 3291
    4. 4)
      • R. Sharma , R.B. Pachori , U.R. Acharya .
        4. Sharma, R., Pachori, R.B., Acharya, U.R.: ‘Application of entropy measures on intrinsic mode functions for the automated identification of self-photo electroencephalogram signals’, Entropy, 2015, 17, pp. 669691.
        . Entropy , 669 - 691
    5. 5)
      • Y. Song , J. Crowcroft , J. Zhang .
        5. Song, Y., Crowcroft, J., Zhang, J.: ‘Automatic epileptic seizure detection in EEGs based on optimized sample entropy and extreme learning machine’, J. Neurosci. Methods, 2012, 210, pp. 132146.
        . J. Neurosci. Methods , 132 - 146
    6. 6)
      • A.J. Zaylaa , A. Harb , F.I. Khatib .
        6. Zaylaa, A.J., Harb, A., Khatib, F.I., et al: ‘Entropy complexity analysis of electroencephalographic signals during pre-ictal, seizure and post-ictal brain events’. Int. Conf. on Advances in Biomedical Engineering, 2015, pp. 134137.
        . Int. Conf. on Advances in Biomedical Engineering , 134 - 137
    7. 7)
      • D. Bhattacharyya , R. Ranjan , A. Farkhod Alisherov .
        7. Bhattacharyya, D., Ranjan, R., Farkhod Alisherov, A., et al: ‘Biometric authentication: a review’, Int. J. u-and e-Serv. Sci. Technol., 2009, 2, pp. 1328.
        . Int. J. u-and e-Serv. Sci. Technol. , 13 - 28
    8. 8)
      • N.V. Boulgouris , N.P. Konstantinos , M.-T. Evangelia . (2009)
        8. Boulgouris, N.V., Konstantinos, N.P., Evangelia, M.-T.: ‘Biometrics: theory, methods, and applications’ (John Wiley & Sons, 2009).
        .
    9. 9)
      • T. Pham , W. Ma , D. Tran .
        9. Pham, T., Ma, W., Tran, D., et al: ‘A study on the feasibility of using EEG signals for authentication purpose’, Neural Inf. Process., 2013, 8227, pp. 562569.
        . Neural Inf. Process. , 562 - 569
    10. 10)
      • S. Yang , F. Deravi .
        10. Yang, S., Deravi, F.: ‘Novel HHT-based features for biometric identification using EEG signals’. Int. Conf. on Pattern Recognition, 2014, pp. 19221927.
        . Int. Conf. on Pattern Recognition , 1922 - 1927
    11. 11)
      • M. Del Pozo-Banos , C.M. Travieso , C.T. Weidemann .
        11. Del Pozo-Banos, M., Travieso, C.M., Weidemann, C.T., et al: ‘EEG biometric identification: a thorough exploration of the time–frequency domain’, J. Neural Eng., 2015, 12, (5), pp. 123.
        . J. Neural Eng. , 5 , 1 - 23
    12. 12)
      • C. Mao , B. Hu , M. Wang .
        12. Mao, C., Hu, B., Wang, M., et al: ‘EEG-based biometric identification using local probability centers’. Int. Joint Conf. on Neural Networks, 2015.
        . Int. Joint Conf. on Neural Networks
    13. 13)
      • S. Sanei , J.A. Chambers . (2013)
        13. Sanei, S., Chambers, J.A.: ‘EEG signal processing’ (John Wiley & Sons, 2013).
        .
    14. 14)
      • S. Marcel , J.R. Del Millan .
        14. Marcel, S., Del Millan, J.R.: ‘Person authentication using brainwaves (EEG) and maximum a posteriori model adaptation’, IEEE Trans. Pattern Anal. Mach. Intell., 2007, 29, pp. 743752.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 743 - 752
    15. 15)
      • D. Phung , D. Tran , W. Ma .
        15. Phung, D., Tran, D., Ma, W., et al: ‘Conditional entropy approach to multichannel EEG-based person identification’. Int. Joint Conf., Advances in Intelligent Systems and Computing, 2015.
        . Int. Joint Conf., Advances in Intelligent Systems and Computing
    16. 16)
      • M. Del Pozo-Banos , J.B. Alonso , J.R. Ticay-Rivas .
        16. Del Pozo-Banos, M., Alonso, J.B., Ticay-Rivas, J.R., et al: ‘Electroencephalogram subject identification: a review’, Expert Syst. Appl., 2014, 41, pp. 65376554.
        . Expert Syst. Appl. , 6537 - 6554
    17. 17)
      • R. Palaniappan , P. Raveendran .
        17. Palaniappan, R., Raveendran, P.: ‘Individual identification technique using visual evoked potential signals’, Electron. Lett., 2002, 38, pp. 16341635.
        . Electron. Lett. , 1634 - 1635
    18. 18)
      • J.F. Hu , Z.D. Mu , P. Wang .
        18. Hu, J.F., Mu, Z.D., Wang, P.: ‘Multi-feature authentication system based on event evoked electroencephalogram’, J. Med. Imaging Health Inf., 2015, 5, (4), pp. 862870.
        . J. Med. Imaging Health Inf. , 4 , 862 - 870
    19. 19)
      • J.F. Hu .
        19. Hu, J.F.: ‘New biometric approach based on motor imagery EEG signals’. Proc. of the Int. Conf. on Future BioMedical Information Engineering, 2009.
        . Proc. of the Int. Conf. on Future BioMedical Information Engineering
    20. 20)
      • S.H. Liew , Y.H. Choo , Y.F. Low .
        20. Liew, S.H., Choo, Y.H., Low, Y.F., et al: ‘Identifying visual evoked potential (VEP) electrodes setting for person authentication’, Int. J. Adv. Soft Comput. Appl., 2015, 7, (3), pp. 8599.
        . Int. J. Adv. Soft Comput. Appl. , 3 , 85 - 99
    21. 21)
      • S.K. Yeom , H.I. Suk , S.W. Lee .
        21. Yeom, S.K., Suk, H.I., Lee, S.W.: ‘Person authentication from neural activity of face-specific visual self-representation’, Pattern Recognit., 2013, 46, (4), pp. 11591169.
        . Pattern Recognit. , 4 , 1159 - 1169
    22. 22)
      • R.B. Paranjape , J. Mahovsky , L. Benedicenti .
        22. Paranjape, R.B., Mahovsky, J., Benedicenti, L., et al: ‘The electroencephalogram as a biometric’. Canadian Conf. on Electrical & Computer Engineering, 2001.
        . Canadian Conf. on Electrical & Computer Engineering
    23. 23)
      • M. Poulos , M. Rangoussi , N. Alexandris .
        23. Poulos, M., Rangoussi, M., Alexandris, N.: ‘Neural network based person identification using EEG features’. Proc. of the IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, 1999.
        . Proc. of the IEEE Int. Conf. on Acoustics, Speech, and Signal Processing
    24. 24)
      • D. La Rocca , P. Campisi , B. Vegso .
        24. La Rocca, D., Campisi, P., Vegso, B., et al: ‘Human brain distinctiveness based on EEG spectral coherence connectivity’, IEEE Trans. Biomed. Eng., 2014, 61, (9), pp. 24062412.
        . IEEE Trans. Biomed. Eng. , 9 , 2406 - 2412
    25. 25)
      • D. Xiao , J.F. Hu .
        25. Xiao, D., Hu, J.F.: ‘Identification of motor imagery EEG signal’. Proc. of the Int. Conf. on Biomedical Engineering and Computer Science, 2010.
        . Proc. of the Int. Conf. on Biomedical Engineering and Computer Science
    26. 26)
      • D. Rodrigues , G.F.A. Silva , J.P. Papa .
        26. Rodrigues, D., Silva, G.F.A., Papa, J.P., et al: ‘EEG-based person identification through binary flower pollination algorithm’, Expert Syst. Appl., 2016, 62, pp. 8190.
        . Expert Syst. Appl. , 81 - 90
    27. 27)
      • P. Kumari , A. Vaish .
        27. Kumari, P., Vaish, A.: ‘Information-theoretic measures on intrinsic mode function for the individual identification using EEG sensors’, IEEE Sens. J., 2015, 15, (9), pp. 49504960.
        . IEEE Sens. J. , 9 , 4950 - 4960
    28. 28)
      • R. Das , E. Maiorana , D. La Rocca .
        28. Das, R., Maiorana, E., La Rocca, D., et al: ‘EEG biometrics for user recognition using visually evoked potentials’. Int. Conf. of the IEEE, Biometrics Special Interest Group, 2015.
        . Int. Conf. of the IEEE, Biometrics Special Interest Group
    29. 29)
      • J.S. Blasco , E. Iáñez , A. Ubeda .
        29. Blasco, J.S., Iáñez, E., Ubeda, A., et al: ‘Visual evoked potential-based brain–machine interface applications to assist disabled people’, Expert Syst. Appl., 2012, 39, pp. 79087918.
        . Expert Syst. Appl. , 7908 - 7918
    30. 30)
      • J. Dauwels , F. Vialatte , A. Cichocki .
        30. Dauwels, J., Vialatte, F., Cichocki, A.: ‘Diagnosis of alzheimer's disease from EEG signals: where are we standing?’, Curr. Alzheimer Res., 2010, 7, pp. 487505.
        . Curr. Alzheimer Res. , 487 - 505
    31. 31)
      • S. Wang , G. Wu , Y. Zhu .
        31. Wang, S., Wu, G., Zhu, Y.: ‘Analysis of affective effects on steady-state visual evoked potential responses’, Intell. Auton. Syst., 2013, 12, pp. 757766.
        . Intell. Auton. Syst. , 757 - 766
    32. 32)
      • M.F. Mousa , R.P. Cubbidge , F. Al-Mansouri .
        32. Mousa, M.F., Cubbidge, R.P., Al-Mansouri, F., et al: ‘Evaluation of hemifield sector analysis protocol in multifocal visual evoked potential objective perimetry for the diagnosis and early detection of glaucomatous field defects’, Korean J. Ophthalmol., 2014, 28, (1), pp. 4965.
        . Korean J. Ophthalmol. , 1 , 49 - 65
    33. 33)
      • M. Abo-Zahhad , S.M. Ahmed , S.N. Abbas .
        33. Abo-Zahhad, M., Ahmed, S.M., Abbas, S.N.: ‘A new multi-level approach to EEG based human authentication using eye blinking’, Pattern Recognit. Lett., 2015, 82, pp. 110.
        . Pattern Recognit. Lett. , 1 - 10
    34. 34)
      • J. Hu , D. Xiao , Z. Mu .
        34. Hu, J., Xiao, D., Mu, Z.: ‘Application of energy entropy in motor imagery EEG classification’, Int. J. Digit. Content Technol. Appl., 2009, 3, (2), pp. 8390.
        . Int. J. Digit. Content Technol. Appl. , 2 , 83 - 90
    35. 35)
      • J.F. Hu .
        35. Hu, J.F.: ‘Biometric system based on EEG signals by feature combination’. Int. Conf. on Measuring Technology and Mechatronics Automation, 2010.
        . Int. Conf. on Measuring Technology and Mechatronics Automation
    36. 36)
      • D. Phung , D. Tran , W. Ma .
        36. Phung, D., Tran, D., Ma, W., et al: ‘Using Shannon entropy as EEG signal feature for fast person identification’. European Symp. on Artificial Neural Networks, 2014.
        . European Symp. on Artificial Neural Networks
    37. 37)
      • N. Kannathal , M.L. Choo , U.R. Acharya .
        37. Kannathal, N., Choo, M.L., Acharya, U.R., et al: ‘Entropies for detection of epilepsy in EEG’, Comput. Methods Programs Biomed., 2005, 80, pp. 187194.
        . Comput. Methods Programs Biomed. , 187 - 194
    38. 38)
      • C.E. Shannon .
        38. Shannon, C.E.: ‘A mathematical theory of communication’, ACM SIGMOBILE Mob. Comput. Commun. Rev., 2001, 5, pp. 355.
        . ACM SIGMOBILE Mob. Comput. Commun. Rev. , 3 - 55
    39. 39)
      • S.M. Pincus .
        39. Pincus, S.M.: ‘Approximate entropy as a measure of system complexity’, Proc. Natl. Acad. Sci., 1991, 88, pp. 22972301.
        . Proc. Natl. Acad. Sci. , 2297 - 2301
    40. 40)
      • J.S. Richman , J.R. Moorman .
        40. Richman, J.S., Moorman, J.R.: ‘Physiological time-series analysis using approximate entropy and sample entropy’, Am. J. Physiol. Heart Circ. Physiol., 2000, 278, pp. 20392049.
        . Am. J. Physiol. Heart Circ. Physiol. , 2039 - 2049
    41. 41)
      • W. Chen , Z. Wang , H. Xie .
        41. Chen, W., Wang, Z., Xie, H., et al: ‘Characterization of surface EMG signal based on fuzzy entropy’, IEEE Trans. Neural Syst. Rehabil. Eng., 2007, 15, pp. 266272.
        . IEEE Trans. Neural Syst. Rehabil. Eng. , 266 - 272
    42. 42)
      • W. Chen , J. Zhuang , W. Yu .
        42. Chen, W., Zhuang, J., Yu, W., et al: ‘Measuring complexity using FuzzyEn, ApEn, and SampEn’, Med. Eng. Phys., 2009, 31, pp. 6168.
        . Med. Eng. Phys. , 61 - 68
    43. 43)
      • S. Hua , Z. Sun .
        43. Hua, S., Sun, Z.: ‘Support vector machine approach for protein subcellular localization prediction’, Bioinformatics, 2001, 17, (8), pp. 721728.
        . Bioinformatics , 8 , 721 - 728
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2016.0144
Loading

Related content

content/journals/10.1049/iet-bmt.2016.0144
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address