http://iet.metastore.ingenta.com
1887

Robust footstep identification system based on acoustic local features

Robust footstep identification system based on acoustic local features

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Footsteps, as a main kind of behavioural trait are a universally available signal. However, it remains a challenging problem to construct a robust footstep authentication system. Since, in practise, footsteps are usually accompanied with noisy and environmental sounds, it is difficult to extract stable footstep features from the mixed sounds. This study describes a novel robust footstep identification system. To extract stable features from the footsteps mixed with noisy or environmental sounds, a robust acoustic local feature extraction method is proposed. In the proposed method, the main frequency components of footsteps are determined, and then their local distributions and variations in time–frequency domain are obtained and regarded as the acoustic local features. These local features are robust to white noise, pink noise and invariant to the intensity of the footsteps. However, the conventional pattern recognition methods are not suitable for them due to that these local features are observably different from the frequently used acoustic features, and so the authors introduce a Bayesian decision classifier to implement footstep identification. Theoretical and experimental results demonstrate that this system is relatively robust to white noise, pink noise, environmental sounds and yields a better classification performance compared with the existing methods.

References

    1. 1)
      • A. Abhyankar , S. Schuckers .
        1. Abhyankar, A., Schuckers, S.: ‘A novel biorthogonal wavelet network system for off-angle iris recognition’, Pattern Recognit., 2010, 43, pp. 9871007.
        . Pattern Recognit. , 987 - 1007
    2. 2)
      • S. Pankanti , S. Prabhakar , A.K. Jain .
        2. Pankanti, S., Prabhakar, S., Jain, A.K.: ‘On the individuality of fingerprints’, IEEE Trans. Pattern Anal. Mach. Intell., 2002, 24, pp. 10101025.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 1010 - 1025
    3. 3)
      • A. Kong , D. Zhang , M. Kamel .
        3. Kong, A., Zhang, D., Kamel, M.: ‘A survey of palmprint recognition’, Pattern Recognit., 2009, 42, pp. 14081418.
        . Pattern Recognit. , 1408 - 1418
    4. 4)
      • H. Vajaria , T. Islam , P. Mohanty .
        4. Vajaria, H., Islam, T., Mohanty, P., et al: ‘Evaluation and analysis of a face and voice outdoor multi-biometric system’, Pattern Recognit. Lett., 2007, 28, pp. 15721580.
        . Pattern Recognit. Lett. , 1572 - 1580
    5. 5)
      • X. Wang , T.F. Yang , Y. Yao .
        5. Wang, X., Yang, T.F., Yao, Y., et al: ‘Footstep identification system based on walking interval’, IEEE Intell. Syst., 2015, 30, pp. 4652, doi: 10.1109/MIS.2015.5.
        . IEEE Intell. Syst. , 46 - 52
    6. 6)
      • K. Mikolajczyk , C. Schmid .
        6. Mikolajczyk, K., Schmid, C.: ‘A performance evaluation of local descriptors’, IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27, (10), pp. 16151630.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 10 , 1615 - 1630
    7. 7)
      • J.A. Reza , J.S. Kossar , M. Fariborz .
        7. Reza, J.A., Kossar, J.S., Fariborz, M.: ‘A new illumination invariant feature based on SIFT descriptor in color space’, Procedia Eng., 2012, 41, pp. 305311.
        . Procedia Eng. , 305 - 311
    8. 8)
      • S. Lazebnik , C. Schmid , J. Ponce .
        8. Lazebnik, S., Schmid, C., Ponce, J.: ‘A sparse texture representation using local affine regions’, IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27, (8), pp. 12651278.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 8 , 1265 - 1278
    9. 9)
      • M. Heikkila , M. Pietikainena , C. Schmid .
        9. Heikkila, M., Pietikainena, M., Schmid, C.: ‘Description of interest regions with local binary patterns’, Pattern Recognit., 2009, 42, (3), pp. 425436.
        . Pattern Recognit. , 3 , 425 - 436
    10. 10)
      • Y. Shoji , T. Takasuka , H. Yasukawa .
        10. Shoji, Y., Takasuka, T., Yasukawa, H.: ‘Personal identification using footstep detection’. Proc. of Int. Symp. on Intelligent Signal Processing and Communication Systems, 2004, pp. 4347.
        . Proc. of Int. Symp. on Intelligent Signal Processing and Communication Systems , 43 - 47
    11. 11)
      • Y. Shoji , A. Itai , H. Yasukawa .
        11. Shoji, Y., Itai, A., Yasukawa, H.: ‘Personal identification using footstep detection in in-door environment’, IEICE Trans. Fundam., 2005, E88-A, (8), pp. 5354.
        . IEICE Trans. Fundam. , 8 , 53 - 54
    12. 12)
      • A. Itai , H. Yasukawa .
        12. Itai, A., Yasukawa, H.: ‘Footstep recognition with psycho-acoustics parameter’. Proc. of IEEE Asia Pacific Conf. on Circuits and Systems, 2006, pp. 992995.
        . Proc. of IEEE Asia Pacific Conf. on Circuits and Systems , 992 - 995
    13. 13)
      • A. Itai , H. Yasukawa .
        13. Itai, A., Yasukawa, H.: ‘Personal identification using footstep based on wavelets’. Proc. of Int. Symp. on Intelligent Signal Processing and Communication Systems, 2006, pp. 383386.
        . Proc. of Int. Symp. on Intelligent Signal Processing and Communication Systems , 383 - 386
    14. 14)
      • A. Itai , H. Yasukawa .
        14. Itai, A., Yasukawa, H.: ‘Footstep classification using simple speech’, IEEE Int. Symp. on Circuits and Systems, 2008, pp. 32343237.
        . IEEE Int. Symp. on Circuits and Systems , 3234 - 3237
    15. 15)
      • R.L. de Carvalho , P.F.F. Rosa .
        15. de Carvalho, R.L., Rosa, P.F.F.: ‘Identification system for smart homes using footstep sounds’. IEEE Int. Symp. on Industrial Electronics, 2010, pp. 16391644.
        . IEEE Int. Symp. on Industrial Electronics , 1639 - 1644
    16. 16)
      • M. Miyoshi , K. Mori , Y. Kashihara .
        16. Miyoshi, M., Mori, K., Kashihara, Y., et al: ‘Personal identification method using footsteps’. Proc. of SICE Annual Conf., 2011, pp. 16151620.
        . Proc. of SICE Annual Conf. , 1615 - 1620
    17. 17)
      • G. Qian , J. Zhang , A. Kidane .
        17. Qian, G., Zhang, J., Kidane, A.: ‘People identification using floor pressure sensing and analysis’, IEEE Sens. J., 2010, 10, (9), pp. 14471460.
        . IEEE Sens. J. , 9 , 1447 - 1460
    18. 18)
      • R. Vera-Rodriguez , J.S.D. Mason , J. Fierrez .
        18. Vera-Rodriguez, R., Mason, J.S.D., Fierrez, J., et al: ‘Analysis of spatial domain information for footstep recognition’, IET Comput. Vis., 2011, 5, (6), pp. 380388.
        . IET Comput. Vis. , 6 , 380 - 388
    19. 19)
      • R. Vera-Rodriguez , J.S.D. Mason , J. Fierrez .
        19. Vera-Rodriguez, R., Mason, J.S.D., Fierrez, J., et al: ‘Comparative analysis and fusion of spatiotemporal information for footstep recognition’, IEEE Trans. Pattern Anal. Mach. Intell., 2013, 35, (4), pp. 823834.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 4 , 823 - 834
    20. 20)
      • R. Vera-Rodriguez , J.S.D. Mason , N.W.D. Evans . (2009)
        20. Vera-Rodriguez, R., Mason, J.S.D., Evans, N.W.D.: ‘Assessment of a footstep biometric verification system’ (Advances in Pattern Recognition: Handbook of Remote Biometrics, Springer, 2009), pp. 313327.
        .
    21. 21)
      • A.K. Jain , R.C. Dubes . (1998)
        21. Jain, A.K., Dubes, R.C.: ‘Algorithms for clustering data’ (Prentice-Hall Inc., Upper Saddle River, NJ, USA, 1998).
        .
    22. 22)
      • J. Ren .
        22. Ren, J.: ‘ANN vs. SVM: which one performs better in classification of MCCs in mammogram imaging’, Knowl.-Based Syst., 2012, 26, (1), pp. 144153.
        . Knowl.-Based Syst. , 1 , 144 - 153
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2016.0139
Loading

Related content

content/journals/10.1049/iet-bmt.2016.0139
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address