http://iet.metastore.ingenta.com
1887

View-invariant gait recognition system using a gait energy image decomposition method

View-invariant gait recognition system using a gait energy image decomposition method

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Gait recognition systems can capture biometrical information from a distance and without the user's active cooperation, making them suitable for surveillance environments. However, there are two challenges for gait recognition that need to be solved, namely when: (i) the walking direction is unknown and/or (ii) the subject's appearance changes significantly due to different clothes being worn or items being carried. This study discusses the problem of gait recognition in unconstrained environments and proposes a new system to tackle recognition when facing the two listed challenges. The system automatically identifies the walking direction using a perceptual hash (PHash) computed over the leg region of the gait energy image (GEI) and then compares it against the PHash values of different walking directions stored in the database. Robustness against appearance changes are obtained by decomposing the GEI into sections and selecting those sections unaltered by appearance changes for comparison against a database containing GEI sections for the identified walking direction. The proposed recognition method then recognises the user using a majority decision voting. The proposed view-invariant gait recognition system is computationally inexpensive and outperforms the state-of-the-art in terms of recognition performance.

References

    1. 1)
      • Y. Makihara , D. Matovski , M. Nixon . (2015)
        1. Makihara, Y., Matovski, D., Nixon, M., et al: ‘Gait recognition: databases, representations, and applications’ (Wiley Encyclopedia of Electrical and Electronics Engineering, 2015).
        .
    2. 2)
      • D. Gafurov .
        2. Gafurov, D.: ‘A survey of biometric gait recognition: approaches, security and challenges’. Proc. Annual Norwegian Computer Science Conf., 2007.
        . Proc. Annual Norwegian Computer Science Conf.
    3. 3)
      • M. Ju , B. Bhanu .
        3. Ju, M., Bhanu, B.: ‘Individual recognition using gait energy image’, IEEE Trans. Pattern Anal. Mach. Intell., 2006, 28, (2), pp. 316322.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 2 , 316 - 322
    4. 4)
      • J. Fazenda , D. Santos , P. Correia .
        4. Fazenda, J., Santos, D., Correia, P.: ‘Using gait to recognize people’. Proc. Int. Conf. on Computer as a Tool, EUROCON, Belgrade, 2005.
        . Proc. Int. Conf. on Computer as a Tool, EUROCON
    5. 5)
      • T. Tardi , C.D. Sruti .
        5. Tardi, T., Sruti, C.D.: ‘Silhouette-based gait recognition using procrustes shape analysis and elliptic fourier descriptors’, Pattern Recognit., 2012, 45, (9), pp. 34143426.
        . Pattern Recognit. , 9 , 3414 - 3426
    6. 6)
      • L. Poo , A. Tan , S. Tan .
        6. Poo, L., Tan, A., Tan, S.: ‘Gait probability image: an information-theoretic model of gait representation’, J. Vis. Commun. Image Represent., 2014, 25, (6), pp. 14891492.
        . J. Vis. Commun. Image Represent. , 6 , 1489 - 1492
    7. 7)
      • Y. Iwashita , R. Kurazume , R. Baba .
        7. Iwashita, Y., Kurazume, R., Baba, R., et al: ‘Method for gait-based biometric identification robust to changes in observation angle’. Proc. 26th Int. Conf. of Image and Vision Computing, Auckland, New Zealand, 2011.
        . Proc. 26th Int. Conf. of Image and Vision Computing
    8. 8)
      • D. Muramatsu , A. Shiraishi , Y. Makihara .
        8. Muramatsu, D., Shiraishi, A., Makihara, Y., et al: ‘Arbitrary view transformation model for gait person authentication’. Proc. 5th Int. Conf. on Theory, Applications and Systems (BTAS), 2012.
        . Proc. 5th Int. Conf. on Theory, Applications and Systems (BTAS)
    9. 9)
      • G. Zhao , G. Liu , H. Li .
        9. Zhao, G., Liu, G., Li, H., et al: ‘3D gait recognition using multiple cameras’. Proc. 7th Int. Conf. on Automatic Face and Gesture Recognition, Southampton, 2006.
        . Proc. 7th Int. Conf. on Automatic Face and Gesture Recognition
    10. 10)
      • A. Kale , A. Chowdhury , R. Chellappa .
        10. Kale, A., Chowdhury, A., Chellappa, R.: ‘Towards a view invariant gait recognition algorithm’. Proc. Int. Conf. on Advanced Video and Signal Based Surveillance, 2005.
        . Proc. Int. Conf. on Advanced Video and Signal Based Surveillance
    11. 11)
      • I. Bouchrika , J. Carter , M. Nixon .
        11. Bouchrika, I., Carter, J., Nixon, M.: ‘Towards automated visual surveillance using gait for identity recognition and tracking across multiple non-intersecting cameras’, Multimedia Tools Appl., 2016, 75, (2), pp. 12011221.
        . Multimedia Tools Appl. , 2 , 1201 - 1221
    12. 12)
      • M. Goffredo , I. Bouchrika , J. Carter .
        12. Goffredo, M., Bouchrika, I., Carter, J., et al: ‘Self-calibrating view-invariant gait biometrics’, IEEE Trans. Syst. Man Cybern., 2010, 40, (4), pp. 9971008.
        . IEEE Trans. Syst. Man Cybern. , 4 , 997 - 1008
    13. 13)
      • F. Jeana , A. Albub , R. Bergevina .
        13. Jeana, F., Albub, A., Bergevina, R.: ‘Towards view-invariant gait modeling: computing view-normalized body’, Pattern Recognit., 2009, 42, (11), pp. 29362949.
        . Pattern Recognit. , 11 , 2936 - 2949
    14. 14)
      • W. Kusakunniran , Q. Wu , H. Li .
        14. Kusakunniran, W., Wu, Q., Li, H., et al: ‘Multiple views gait recognition using view transformation model based on optimized gait energy image’. Proc. IEEE 12th Int. Conf. on Computer Vision Workshops (ICCV Workshops), Kyoto, 2009.
        . Proc. IEEE 12th Int. Conf. on Computer Vision Workshops (ICCV Workshops)
    15. 15)
      • H. Chaubey , M. Hanmandlu , S. Vasikarla .
        15. Chaubey, H., Hanmandlu, M., Vasikarla, S.: ‘Enhanced view invariant gait recognition using feature level fusion’. Proc. Applied Imagery Pattern Recognition Workshop (AIPR), Washington DC, 2014.
        . Proc. Applied Imagery Pattern Recognition Workshop (AIPR)
    16. 16)
      • K. Shiraga , Y. Makihara , D. Muramatsu .
        16. Shiraga, K., Makihara, Y., Muramatsu, D., et al: ‘GEINet: view-invariant gait recognition using a convolutional neural network’. Proc. IEEE Int. Conf. on Biometrics (ICB), 2016.
        . Proc. IEEE Int. Conf. on Biometrics (ICB)
    17. 17)
      • N. Liu , Y. Tan .
        17. Liu, N., Tan, Y.: ‘View invariant gait recognition’. Proc. IEEE Int. Conf. on Acoustics Speech and Signal Processing (ICASSP), Dallas, TX, 2010.
        . Proc. IEEE Int. Conf. on Acoustics Speech and Signal Processing (ICASSP)
    18. 18)
      • W. Kusakunniran , Q. Wu , J. Zhang .
        18. Kusakunniran, W., Wu, Q., Zhang, J., et al: ‘A new view-invariant feature for cross-view gait recognition’, IEEE Trans. Inf. Forensics Sec., 2013, 8, (10), pp. 16421653.
        . IEEE Trans. Inf. Forensics Sec. , 10 , 1642 - 1653
    19. 19)
      • D.S. Choudhury , T. Tardi .
        19. Choudhury, D.S., Tardi, T.: ‘Robust view invariant multiscale gait recognition’, Pattern Recognit., 2015, 48, (3), pp. 798811.
        . Pattern Recognit. , 3 , 798 - 811
    20. 20)
      • Y. Guan , C. Li , Y. Hu .
        20. Guan, Y., Li, C., Hu, Y.: ‘An adaptive system for gait recognition in multi-view environments’. Proc. 14th ACM Multimedia and Security Workshop, Coventry, UK, 2012.
        . Proc. 14th ACM Multimedia and Security Workshop
    21. 21)
      • B. Khalid , X. Tao , G. Shaogang .
        21. Khalid, B., Tao, X., Shaogang, G.: ‘Cross view gait recognition using correlation strength’. Proc. British Machine Vision Conf., London, 2010.
        . Proc. British Machine Vision Conf.
    22. 22)
      • T. Verlekar , P. Correia , L. Soares .
        22. Verlekar, T., Correia, P., Soares, L.: ‘View-invariant gait recognition exploiting spatio-temporal information and a dissimilarity metric’. Proc. Int. Conf. of IEEE in Biometrics Special Interest Group (BIOSIG), 2016.
        . Proc. Int. Conf. of IEEE in Biometrics Special Interest Group (BIOSIG)
    23. 23)
      • Y. Pratheepan , J. Condell , G. Prasad .
        23. Pratheepan, Y., Condell, J., Prasad, G.: ‘P Rw GEI: poisson random walk based gait recognition’. Proc. IEEE 7th Int. Symp. on Image and Signal Processing and Analysis (ISPA), 2011.
        . Proc. IEEE 7th Int. Symp. on Image and Signal Processing and Analysis (ISPA)
    24. 24)
      • K. Bashir , X. Tao , G. Shaogang .
        24. Bashir, K., Tao, X., Shaogang, G.: ‘Gait recognition using gait entropy image’. Proc. 3rd Int. Conf. on Crime Detection and Prevention (ICDP), 2009.
        . Proc. 3rd Int. Conf. on Crime Detection and Prevention (ICDP)
    25. 25)
      • M. Jeevan , N. Jain , M. Hanmandlu .
        25. Jeevan, M., Jain, N., Hanmandlu, M., et al: ‘Gait recognition based on Gait Pal and Pal Entropy Image’. Proc. 20th IEEE Int. Conf. on Image Processing (ICIP), 2013.
        . Proc. 20th IEEE Int. Conf. on Image Processing (ICIP)
    26. 26)
      • K. Bashir , X. Tao , G. Shaogang .
        26. Bashir, K., Tao, X., Shaogang, G.: ‘Gait recognition without subject cooperation’, Pattern Recognit. Lett., 2010, 31, (13), pp. 20522060.
        . Pattern Recognit. Lett. , 13 , 2052 - 2060
    27. 27)
      • Y. Iwashita , K. Uchino , R. Kurazume .
        27. Iwashita, Y., Uchino, K., Kurazume, R.: ‘Gait-based person identification robust to changes in appearance’, Sens. - Open Access J., 2013, 13, (6), pp. 78847901.
        . Sens. - Open Access J. , 6 , 7884 - 7901
    28. 28)
      • Y. Liang , C. Li , Y. Guan .
        28. Liang, Y., Li, C., Guan, Y., et al: ‘Gait recognition based on the golden ratio’, EURASIP J. Image Video Process., 2016, (1), p. 22.
        . EURASIP J. Image Video Process. , 1 , 22
    29. 29)
      • T. Verlekar , P. Correia .
        29. Verlekar, T., Correia, P.: ‘Walking Direction Identification using Perceptual Hashing’. Proc. Int. Workshop on Biometrics and Forensics – IWBF, Limassol, Cyprus, 2016.
        . Proc. Int. Workshop on Biometrics and Forensics – IWBF
    30. 30)
      • 30. ‘CASIA Gait Database’, http://www.sinobiometrics.com.
        .
    31. 31)
      • H. Iwama , M. Okumura , Y. Makihara .
        31. Iwama, H., Okumura, M., Makihara, Y., et al: ‘The OU-ISIR gait database comprising the large population dataset and performance evaluation of gait recognition’, IEEE Trans. Inf. Forensics Sec., 2012, 7, (5), pp. 15111521.
        . IEEE Trans. Inf. Forensics Sec. , 5 , 1511 - 1521
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2016.0118
Loading

Related content

content/journals/10.1049/iet-bmt.2016.0118
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address