http://iet.metastore.ingenta.com
1887

Planting attack on latent fingerprints

Planting attack on latent fingerprints

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The fingerprint is arguably the most successfully deployed biometric data in a broad spectrum of applications for identification and verification purposes. While fingerprint matching algorithms are fairly matured, most studies have so far focused on improving the matching precision, and some effort has been channelled to combat spoofing attacks on biometric readers through liveness detection. To the best of the authors’ knowledge, the feasibility of planting attacks of latent fingerprints has not been reported in the literature. In this study, the authors present a low-cost latent fingerprint planting attack involving steps that can be performed by an untrained person who has no prior knowledge in forensics. Experiment results based on a publicly available database suggest that this approach feasibly leads to planted latent fingerprints being indistinguishable from real ones. It is also verified that the planted latent fingerprints could be utilised to identify their corresponding rolled fingerprints, suggesting the viability of the proposed latent fingerprint planting attack.

References

    1. 1)
      • 1. Jain, A.K., Ross, A., Prabhakar, S.: ‘An introduction to biometric recognition’, IEEE Trans. Circuits Syst. Video Technol., 2004, 14, (1), pp. 420.
    2. 2)
      • 2. Liu, Z., Sarkar, S.: ‘Improved gait recognition by gait dynamics normalization’, IEEE Trans. Pattern Anal. Mach. Intell., 2006, 28, (6), pp. 863876.
    3. 3)
      • 3. Yang, A., Zhou, Z., Balasubramanian, A., et al: ‘Fast 1 minimization algorithms for robust face recognition’, IEEE Trans. Image Process., 2013, 22, (8), pp. 32343246.
    4. 4)
      • 4. Alvarez-Betancourt, Y., Garcia-Silvente, M.: ‘An overview of iris recognition: a bibliometric analysis of the period 2000–2012’, Scientometrics, 2014, 101, (3), pp. 20032033.
    5. 5)
      • 5. Galbally, J., Marcel, S., Fiérrez, J.: ‘Image quality assessment for fake biometric detection: application to iris, fingerprint, and face recognition’, IEEE Trans. Image Process., 2014, 23, (2), pp. 710724.
    6. 6)
      • 6. Matsumoto, T., Matsumoto, H., Yamada, K., et al: ‘Impact of artificial ‘gummy’ fingers on fingerprint systems’, Datenschutz Datensicherheit, 2002, 26, (8), pp. 275289.
    7. 7)
      • 7. Espinoza, M., Champod, C., Margot, P.: ‘Vulnerabilities of fingerprint reader to fake fingerprints attacks’, Forensic Sci. Int., 2011, 204, (1), pp. 4149.
    8. 8)
      • 8. Cao, K., Jain, A.K.: ‘Hacking mobile phones using 2D printed fingerprints’. MSU Technical Report, MSU-CSE- 16-2, 2016.
    9. 9)
      • 9. Ferrara, M., Cappelli, R., Maltoni, D.: ‘On the feasibility of creating double-identity fingerprints’, IEEE Trans. Inf. Forensics Sec., 2017, 12, (4), pp. 892900.
    10. 10)
      • 10. Chatterjee, A., Bhatia, V., Prakash, S.: ‘Anti-spoof touchless 3D fingerprint recognition system using single shot fringe projection and biospeckle analysis’, Opt. Lasers Eng., 2017, 95, pp. 17.
    11. 11)
      • 11. Bhardwaj, I., Londhe, N., Kopparapu, S.: ‘A spoof resistant multibiometric system based on the physiological and behavioral characteristics of fingerprint’, Pattern Recognit., 2017, 62, pp. 214224.
    12. 12)
      • 12. Venugopalan, S., Savvides, M.: ‘How to generate spoofed irises from an iris code template’, IEEE Trans. Inf. Forensics Sec., 2011, 6, (2), pp. 385395.
    13. 13)
      • 13. Lai, Y., Jin, Z., Teoh, A., et al: ‘Cancellable iris template generation based on indexing-First-One hashing’, Pattern Recognit., 2017, 64, pp. 105117.
    14. 14)
      • 14. Gafurov, D., Snekkenes, E., Bours, P.: ‘Spoof attacks on gait authentication system’, IEEE Trans. Inf. Forensics Sec., 2007, 2, (3), pp. 491502.
    15. 15)
      • 15. Reddy, P., Kumar, A., Rahman, S., et al: ‘A new antispoofing approach for biometric devices’, IEEE Trans. Biomed. Circuits Syst., 2008, 2, (4), pp. 328337.
    16. 16)
      • 16. Baldisserra, D., Franco, A., Maio, D., et al: ‘Fake fingerprint detection by odor analysis’. Proc. Int. Conf. ICB, Hong Kong, China, January 2006, pp. 265272.
    17. 17)
      • 17. Freitas Pereira, T., Komulainen, J., Anjos, A., et al: ‘Face liveness detection using dynamic texture’, EURASIP J. Image Video Process., 2014, 2014, (1), pp. 115.
    18. 18)
      • 18. Barral, C.: ‘Biometrics & security: combining fingerprints, smart cards and cryptography’. PhD thesis, EPFL, 2010.
    19. 19)
      • 19. Bowden-Peters, E., Raphael, C.-W.P., Whitley, J.N., et al: ‘Fooling a liveness-detecting capacitive fingerprint scanner’, in Naccache, D. (Ed.): ‘Cryptography and security’ (Springer, 2012), pp. 484490.
    20. 20)
      • 20. Jain, A.K., Feng, J.: ‘Latent fingerprint matching’, IEEE Trans. Pattern Anal. Mach. Intell., 2011, 33, (1), pp. 88100.
    21. 21)
      • 21. Barral, C., Tria, A.: ‘Fake fingers in fingerprint recognition: glycerin supersedes gelatin’ (Springer, New York, 2009), pp. 5769.
    22. 22)
      • 22. Matsumoto, T.: ‘Gummy and conductive silicone rubber fingers importance of vulnerability analysis. Advances in cryptology ASIACRYPT’ (Springer, New York, 2002), pp. 574575.
    23. 23)
      • 23. Schwarz, L.: ‘An amino acid model for latent fingerprints on porous surfaces’, J. Forensic Sci., 2009, 54, (6), pp. 13231326.
    24. 24)
      • 24. Dittmann, J., Hildebrandt, M.: ‘Context analysis of artificial sweat printed fingerprint forgeries: assessment of properties for forgery detection’. Int. Workshop on Biometrics Forensics (IWBF), 2014, pp. 16.
    25. 25)
      • 25. Cappelli, R., Ferrara, M., Maltoni, D.: ‘Minutia cylinder-code: a new representation and matching technique for fingerprint recognition’, IEEE Trans. Pattern Anal. Mach. Intell., 2010, 32, (12), pp. 21282141.
    26. 26)
      • 26. Paulino, A.A., Feng, J., Jain, A.K.: ‘Latent fingerprint matching using descriptor-based hough transform’, IEEE Trans. Inf. Forensics Sec., 2013, 8, (1), pp. 3145.
    27. 27)
      • 27. Cappelli, R., Ferrara, M., Maltoni, D., et al: ‘MCC: a baseline algorithm for fingerprint verification in FVC-onGoing’. Proc. Int. Conf. on Control, Automation, Robotics and Vision, Singapore, December 2010, pp. 1923.
    28. 28)
      • 28. Cappelli, R., Ferrara, M., Maltoni, D.: ‘Fingerprint indexing based on minutia cylinder code’, IEEE Trans. Pattern Anal. Mach. Intell., 2011, 33, (5), pp. 10511057.
    29. 29)
      • 29. Ferrara, M., Maltoni, D., Cappelli, R.: ‘Noninvertible minutia cylinder-code representation’, IEEE Trans. Inf. Forensics Sec., 2012, 7, (6), pp. 17271737.
    30. 30)
      • 30. Ferrara, M., Maltoni, D., Cappelli, R.: ‘A two-factor protection scheme for MCC fingerprint templates’. Proc. Int. Conf. of the Biometrics Special Interest Group (BIOSIG), Darmstadt, Germany, September 2014, pp. 171178.
    31. 31)
      • 31. ‘VeriFinger 8.0 SDK’. Available at http://www.neurotechnology.com/verifinger.html, accessed 15 February 2016.
    32. 32)
      • 32. ‘Minutia Cylinder-Code SDK’. Available at http://biolab.csr.unibo.it/research.asp?organize=Activities, accessed 1 January 2015.
    33. 33)
      • 33. ‘NIST Special Database 27A -(SD 27A)’. Available at http://www.nist.gov/itl/iad/ig/sd27a.cfm, accessed 1 February 2015.
    34. 34)
      • 34. ‘NIST Fingerprint Image Quality (NFIQ)’. Available at http://www.nist.gov/itl/iad/ig/bio-quality.cfm, accessed 1 February 2015.
    35. 35)
      • 35. Saks, M., Koehler, J.: ‘The coming paradigm shift in forensic identification science’, Science, 2005, 309, (5736), pp. 892895.
    36. 36)
      • 36. Cummins, H.: ‘Counterfeit finger-prints’, J. Criminal Law Criminol., 1934, 25, (4), pp. 665671.
    37. 37)
      • 37. Geller, B., Almog, J., Margot, P.: ‘Fingerprint forgery: a survey’, J. Forensic Sci., 2001, 46, (3), pp. 731733.
    38. 38)
      • 38. Marcel, S., Nixon, M.S., Li, S.Z.: ‘Handbook of biometric anti-spoofing: trusted biometrics under spoofing attacks’ (Springer, New York, 2014).
    39. 39)
      • 39. Ex CSI Chief of Royal Malaysian Police, personal communication, October 2015.
    40. 40)
      • 40. Mario, H., Jana, D.: ‘From StirMark to StirTrace: benchmarking pattern recognition based printed fingerprint detection’. Proc. of the 2nd ACM Workshop on Information Hiding and Multimedia Security, 2014, pp. 7176.
    41. 41)
      • 41. Mario, H., Jana, D.: ‘StirTraceV2.0: enhanced benchmarking and tuning of printed fingerprint detection’, IEEE Trans. Inf. Forensics Sec., 2015, 10, (4), pp. 833848.
    42. 42)
      • 42. Mario, H., Jana, D.: ‘Stirtracev3.0 and printed fingerprint detection: simulation of acquisition condition tilting and its impact to latent fingerprint detection feature spaces for crime scene forgeries’. Biometrics and Forensics (IWBF), 2016, pp. 16.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2016.0113
Loading

Related content

content/journals/10.1049/iet-bmt.2016.0113
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address