http://iet.metastore.ingenta.com
1887

Online signature verification using double-stage feature extraction modelled by dynamic feature stability experiment

Online signature verification using double-stage feature extraction modelled by dynamic feature stability experiment

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
— Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Identification based on signature verification is one of the most popular biometric methods which were used even prior to the advent of computers. In the field of dynamic signature verification, signatures' time functions (e.g. pen tip velocity, acceleration and pressure) are analysed in addition to static appearance of signatures. Dynamic feature stability (DFS) experiment is a process for finding the most stable signature partitions which are difficult to forge. The experiment can most effectively lead to a focus on the signature trajectories. Due to the different angles related to the signature pad which are regarded as major problem in signature verification algorithms, in this study, radon transform is used to transform rotation effect to shift effect. Convolutional neural network disregards the precise location of image features, as well as shift effects in both axes of image that is decline by its nature. According to DFS experiment, three independent recognition paths are structured and their effects on final classification are determined by the experiment. Three Persian datasets are analysed by DFS, which led to a reliable trait of Persian signatures. As a result, the least verification error is attained. Besides, SVC2004, as an international benchmark is evaluated by the proposed algorithm.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2016.0103
Loading

Related content

content/journals/10.1049/iet-bmt.2016.0103
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address