http://iet.metastore.ingenta.com
1887

Online signature verification using double-stage feature extraction modelled by dynamic feature stability experiment

Online signature verification using double-stage feature extraction modelled by dynamic feature stability experiment

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Identification based on signature verification is one of the most popular biometric methods which were used even prior to the advent of computers. In the field of dynamic signature verification, signatures' time functions (e.g. pen tip velocity, acceleration and pressure) are analysed in addition to static appearance of signatures. Dynamic feature stability (DFS) experiment is a process for finding the most stable signature partitions which are difficult to forge. The experiment can most effectively lead to a focus on the signature trajectories. Due to the different angles related to the signature pad which are regarded as major problem in signature verification algorithms, in this study, radon transform is used to transform rotation effect to shift effect. Convolutional neural network disregards the precise location of image features, as well as shift effects in both axes of image that is decline by its nature. According to DFS experiment, three independent recognition paths are structured and their effects on final classification are determined by the experiment. Three Persian datasets are analysed by DFS, which led to a reliable trait of Persian signatures. As a result, the least verification error is attained. Besides, SVC2004, as an international benchmark is evaluated by the proposed algorithm.

References

    1. 1)
      • J. Galbally , M. Diaz-Cabrera , M.A. Ferrer .
        1. Galbally, J., Diaz-Cabrera, M., Ferrer, M.A., et al: ‘On-line signature recognition through the combination of real dynamic data and synthetically generated static data’, Pattern Recognit., 2015, 48, (9), pp. 29212934.
        . Pattern Recognit. , 9 , 2921 - 2934
    2. 2)
      • K. Cpałka , M. Zalasiński , L. Rutkowski .
        2. Cpałka, K., Zalasiński, M., Rutkowski, L.: ‘New method for the on-line signature verification based on horizontal partitioning’, Pattern Recognit., 2014, 47, (8), pp. 26522661.
        . Pattern Recognit. , 8 , 2652 - 2661
    3. 3)
      • Y. Guerbai , Y. Chibani , B. Hadjadji .
        3. Guerbai, Y., Chibani, Y., Hadjadji, B.: ‘The effective use of the one-class SVM classifier for handwritten signature verification based on writer-independent parameters’, Pattern Recognit., 2015, 48, (1), pp. 103113.
        . Pattern Recognit. , 1 , 103 - 113
    4. 4)
      • M. Parodi , J.C. Gómez .
        4. Parodi, M., Gómez, J.C.: ‘Legendre polynomials based feature extraction for online signature verification. Consistency analysis of feature combinations’, Pattern Recognit., 2014, 47, (1), pp. 128140.
        . Pattern Recognit. , 1 , 128 - 140
    5. 5)
      • S.Y. Ooi , A.B.J. Teoh , Y.H. Pang .
        5. Ooi, S.Y., Teoh, A.B.J., Pang, Y.H., et al: ‘Image-based handwritten signature verification using hybrid methods of discrete radon transform, principal component analysis and probabilistic neural network’, Appl. Soft Comput., 2016, 40, pp. 274282.
        . Appl. Soft Comput. , 274 - 282
    6. 6)
      • S. Mushtaq , A.H. Mir .
        6. Mushtaq, S., Mir, A.H.: ‘Signature verification: a study’. Proc. Int. Conf. Computer and Communication Technology (ICCCT), Allahabad, India, September 2013, pp. 258263.
        . Proc. Int. Conf. Computer and Communication Technology (ICCCT) , 258 - 263
    7. 7)
      • E. Dehghani , M.E. Moghaddam .
        7. Dehghani, E., Moghaddam, M.E.: ‘On-line signature verification using ANFIS’. Proc. Int. Symp. Image and Signal Processing and Analysis (ISPA), Salzburg, Austria, September 2009, pp. 546549.
        . Proc. Int. Symp. Image and Signal Processing and Analysis (ISPA) , 546 - 549
    8. 8)
      • K. Cpałka , M. Zalasiński .
        8. Cpałka, K., Zalasiński, M.: ‘On-line signature verification using vertical signature partitioning’, Expert Syst. Appl., 2014, 41, (9), pp. 41704180.
        . Expert Syst. Appl. , 9 , 4170 - 4180
    9. 9)
      • M. Fayyaz , M.H. Saffar , M. Sabokrou .
        9. Fayyaz, M., Saffar, M.H., Sabokrou, M., et al: ‘Feature representation for online signature verification’, arXiv preprint arXiv:1505.08153, 2015.
        .
    10. 10)
      • S. Rashidi , A. Fallah , F. Towhidkhah .
        10. Rashidi, S., Fallah, A., Towhidkhah, F.: ‘Feature extraction based DCT on dynamic signature verification’, Sci. Iran., 2012, 19, (6), pp. 18101819.
        . Sci. Iran. , 6 , 1810 - 1819
    11. 11)
      • A. Alizadeh , T. Alizadeh , Z. Daei .
        11. Alizadeh, A., Alizadeh, T., Daei, Z.: ‘Optimal threshold selection for online verification of signature’. Proc. Int. Conf. Engineers and Computer Scientists, Hong Kong, China, March 2010, pp. 98102.
        . Proc. Int. Conf. Engineers and Computer Scientists , 98 - 102
    12. 12)
      • L. Nanni , A. Lumini .
        12. Nanni, L., Lumini, A.: ‘A novel local on-line signature verification system’, Pattern Recognit. Lett., 2008, 29, (5), pp. 559568.
        . Pattern Recognit. Lett. , 5 , 559 - 568
    13. 13)
      • J. Fierrez , J. Ortega-Garcia , D. Ramos .
        13. Fierrez, J., Ortega-Garcia, J., Ramos, D., et al: ‘HMM-based on-line signature verification: feature extraction and signature modeling’, Pattern Recognit. Lett., 2007, 28, (16), pp. 23252334.
        . Pattern Recognit. Lett. , 16 , 2325 - 2334
    14. 14)
      • A. Sanmorino , S. Yazid .
        14. Sanmorino, A., Yazid, S.: ‘A survey for handwritten signature verification’. Int. Conf. Uncertainty Reasoning and Knowledge Engineering (URKE), Jakarta, Indonesia, August 2012, pp. 5457.
        . Int. Conf. Uncertainty Reasoning and Knowledge Engineering (URKE) , 54 - 57
    15. 15)
      • M.E. Yahyatabar , Y. Baleghi , M.R. Karami .
        15. Yahyatabar, M.E., Baleghi, Y., Karami, M.R.: ‘Online signature verification: A Persian-language specific approach’. Proc. Conf. Electrical Engineering (ICEE), Mashhad, Iran, May 2013, pp. 16.
        . Proc. Conf. Electrical Engineering (ICEE) , 1 - 6
    16. 16)
      • M.E. Yahyatabar , Y. Baleghi , M.R. Karami .
        16. Yahyatabar, M.E., Baleghi, Y., Karami, M.R.: ‘Online signature verification: a robust approach for persian signatures’, J. Inf. Syst. Telecommun., 2015, 3, (2), pp. 115124.
        . J. Inf. Syst. Telecommun. , 2 , 115 - 124
    17. 17)
      • M.A.U. Khan , M.K.K. Niazi , M.A. Khan .
        17. Khan, M.A.U., Niazi, M.K.K., Khan, M.A.: ‘Velocity-image model for online signature verification’, IEEE Trans. Image Process., 2006, 15, (11), pp. 35403549.
        . IEEE Trans. Image Process. , 11 , 3540 - 3549
    18. 18)
      • J. Coetzer , B.M. Herbst , J.A. du Preez .
        18. Coetzer, J., Herbst, B.M., du Preez, J.A.: ‘Offline signature verification using the discrete radon transform and a hidden Markov model’, EURASIP J. Adv. Signal Process., 2004, 2004, (4), pp. 113.
        . EURASIP J. Adv. Signal Process. , 4 , 1 - 13
    19. 19)
      • S.A. Angadi , S. Gour , G. Bhajantri .
        19. Angadi, S.A., Gour, S., Bhajantri, G.: ‘Offline signature recognition system using radon transform’. Proc. Int. Conf. Signal and Image Processing (ICSIP), Bangalore, India, January 2014, pp. 5661.
        . Proc. Int. Conf. Signal and Image Processing (ICSIP) , 56 - 61
    20. 20)
      • H. Ahmed , S. Shukla , H.M. Rai .
        20. Ahmed, H., Shukla, S., Rai, H.M.: ‘Static handwritten signature recognition using discrete random transform and combined projection based technique’. Proc. Int. Conf. Advanced Computing & Communication Technologies, Rohtak, India, February 2014, pp. 3741.
        . Proc. Int. Conf. Advanced Computing & Communication Technologies , 37 - 41
    21. 21)
      • Y. LeCun , K. Kavukcuoglu , C. Farabet .
        21. LeCun, Y., Kavukcuoglu, K., Farabet, C.: ‘Convolutional networks and applications in vision’. Proc. Int. Symp. Circuits and Systems, Paris, France, May 2010, pp. 253256.
        . Proc. Int. Symp. Circuits and Systems , 253 - 256
    22. 22)
      • M.E. Yahyatabar .
        22. Yahyatabar, M.E.: ‘Online signature verification’. MS thesis, Babol Noshirvani University of Technology, 2012.
        .
    23. 23)
      • M.P. Queluz .
        23. Queluz, M.P.: ‘Authentication of digital images and video: generic models and a new contribution’, Signal Process., Image Commun., 2001, 16, (5), pp. 461475.
        . Signal Process., Image Commun. , 5 , 461 - 475
    24. 24)
      • G. Beylkin .
        24. Beylkin, G.: ‘Discrete radon transform’, IEEE Trans. Acoust. Speech Signal Process., 1987, 35, (2), pp. 162172.
        . IEEE Trans. Acoust. Speech Signal Process. , 2 , 162 - 172
    25. 25)
      • J.S. Seo , J. Haitsma , T. Kalker .
        25. Seo, J.S., Haitsma, J., Kalker, T., et al: ‘A robust image fingerprinting system using the radon transform’, Signal Process., Image Commun., 2004, 19, (4), pp. 325339.
        . Signal Process., Image Commun. , 4 , 325 - 339
    26. 26)
      • Y. LeCun , B. Yoshua . (1990)
        26. LeCun, Y., Yoshua, B.: ‘Handwritten digit recognition with a back-propagation network’, in Touretzky, D.S. (Ed.): ‘Advances in neural information processing systems’ (MIT Press, 1990), pp. 396404.
        .
    27. 27)
      • Y. Lecun , Y. Bengio . (1995)
        27. Lecun, Y., Bengio, Y.: ‘Convolutional networks for images, speech, and time-series’, in Arbib, M.A. (Ed.): ‘The handbook of brain theory and neural networks’ (MIT Press, 1995).
        .
    28. 28)
      • A. Krizhevsky , I. Sutskever , G.E. Hinton .
        28. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ‘ImageNet classification with deep convolutional neural networks’. Proc. Advances in Neural Information Processing Systems (NIPS), Tahoe, USA, December 2012, pp. 10971105.
        . Proc. Advances in Neural Information Processing Systems (NIPS) , 1097 - 1105
    29. 29)
      • S. Lawrence , C.L. Giles , T. Ah Chung .
        29. Lawrence, S., Giles, C.L., Ah Chung, T., et al: ‘Face recognition: a convolutional neural-network approach’, IEEE Trans. Neural Netw., 1997, 8, (1), pp. 98113.
        . IEEE Trans. Neural Netw. , 1 , 98 - 113
    30. 30)
      • M. Zoghi , V. Abolghasemi .
        30. Zoghi, M., Abolghasemi, V.: ‘Persian signature verification using improved dynamic time warping-based segmentation and multivariate autoregressive modeling’. Workshop on Statistical Signal Processing, Cardiff, Wales, December 2009, pp. 329332.
        . Workshop on Statistical Signal Processing , 329 - 332
    31. 31)
      • D.-Y. Yeung , H. Chang , Y. Xiong .
        31. Yeung, D.-Y., Chang, H., Xiong, Y., et al: ‘SVC2004: first international signature verification competition’. Int. Conf. Biometric Authentication (ICBA), Hong Kong, China, July 2004, pp. 1622.
        . Int. Conf. Biometric Authentication (ICBA) , 16 - 22
    32. 32)
      • 32. ‘Noshirvani Dynamic Signature Dataseet (NDSD)’. Available at http://yahyatabar.ir.
        .
    33. 33)
      • A. Sharma , S. Sundaram .
        33. Sharma, A., Sundaram, S.: ‘An enhanced contextual DTW based system for online signature verification using vector quantization’, Pattern Recognit. Lett., 2016, 84, pp. 2228.
        . Pattern Recognit. Lett. , 22 - 28
    34. 34)
      • T. Hafs , L. Bennacer , M. Boughazi .
        34. Hafs, T., Bennacer, L., Boughazi, M., et al: ‘Empirical mode decomposition for online handwritten signature verification’, IET Biometrics, 2016, 5, (3), pp. 190199.
        . IET Biometrics , 3 , 190 - 199
    35. 35)
      • A.Q. Ansari , M. Hanmandlu , J. Kour .
        35. Ansari, A.Q., Hanmandlu, M., Kour, J., et al: ‘Online signature verification using segment-level fuzzy modelling’, IET Biometrics, 2014, 3, (3), pp. 113127.
        . IET Biometrics , 3 , 113 - 127
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2016.0103
Loading

Related content

content/journals/10.1049/iet-bmt.2016.0103
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address