http://iet.metastore.ingenta.com
1887

Survey on the impact of fingerprint image enhancement

Survey on the impact of fingerprint image enhancement

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The performance of fingerprint comparison algorithms depends on the reliability and accuracy of the features extracted from the fingerprints. The accuracy of the feature extraction algorithms is assumed to depend on the quality of the fingerprint images. Especially, low-quality images can be challenging for feature extraction algorithms. Image enhancement may allow to extract features more accurately. There is a lack of extensive and quantitative evaluation of image enhancement methods. This study investigates the impact of seven typical image enhancement methods on biometric sample quality and on biometric performance. The interrelation of image quality and biometric performance is investigated on 14 datasets. Biometric quality measures are estimated based on image quality metrics NFIQ1 and NFIQ2.0. Biometric performance is tested using MINDTCT and FingerJetFX for feature extraction and BOZORTH3 for biometric comparison. This work shows that the biometric performance can be improved by image enhancement. The significance of improvements depends on both the quality of the datasets and the feature extraction. Thus, there is no single best improvement algorithm. A correlation of changes in scores and image qualities can only be found on the level of entire datasets. No significant correlation can be found for single biometric comparisons.

References

    1. 1)
      • (2012)
        1. ISO: ‘Information technology – vocabulary – part 37: biometrics’, ISO 2382-37:2012 (International Organization for Standardization, Geneva, Switzerland, 2012).
        .
    2. 2)
      • D. Ezhilmaran , M. Adhiyaman .
        2. Ezhilmaran, D., Adhiyaman, M.: ‘A review study on fingerprint image enhancement techniques’, Int. J. Comput. Sci. Eng. Technol., 2014, 5, pp. 22293345.
        . Int. J. Comput. Sci. Eng. Technol. , 2229 - 3345
    3. 3)
      • D.K. Misra , S. Tripathi , D. Misra .
        3. Misra, D.K., Tripathi, S., Misra, D.: ‘A review report on fingerprint image enhancement filter’, Int. J. Comput. Sci. Eng. Inf. Technol. Res., 2013, 1, (3), pp. 403416.
        . Int. J. Comput. Sci. Eng. Inf. Technol. Res. , 3 , 403 - 416
    4. 4)
      • D.K. Misra , S. Tripathi , D. Misra .
        4. Misra, D.K., Tripathi, S., Misra, D.: ‘A review report on fingerprint image enhancement techniques’. IJETTCS, 2013, vol. 2.
        . IJETTCS
    5. 5)
      • P. Kaur , J. Kaur .
        5. Kaur, P., Kaur, J.: ‘A review paper on fingerprint image enhancement with different methods’, Int. J. Mod. Eng. Res., 2013, 3, (4).
        . Int. J. Mod. Eng. Res. , 4
    6. 6)
      • A.A. Abbood , G. Sulong , S. Peters .
        6. Abbood, A.A., Sulong, G., Peters, S.: ‘A review of fingerprint image pre-processing’, J. Teknol., 2014, 69, pp. 7984.
        . J. Teknol. , 79 - 84
    7. 7)
      • H. Sawant , M. Deore .
        7. Sawant, H., Deore, M.: ‘A comprehensive review of image enhancement techniques’, Int. J. Comput. Technol. Electron. Eng., 2010, 1, (2), pp. 3944.
        . Int. J. Comput. Technol. Electron. Eng. , 2 , 39 - 44
    8. 8)
      • R. Rajin , K. Ajith .
        8. Rajin, R., Ajith, K.: ‘Comparative study on various fingerprint image enhancement techniques’, Compusoft, 2015, 4, (2), p. 1502.
        . Compusoft , 2 , 1502
    9. 9)
      • Z. Wang , S. Chen , C. Busch .
        9. Wang, Z., Chen, S., Busch, C., et al: ‘Performance evaluation of fingerprint enhancement algorithms’. Congress on Image and Signal Processing, 2008, CISP'08, 2008, vol. 3, pp. 389393.
        . Congress on Image and Signal Processing, 2008, CISP'08, 2008 , 389 - 393
    10. 10)
      • K. Arora , P. Garg .
        10. Arora, K., Garg, P.: ‘A quantitative survey of various fingerprint enhancement techniques’, Int. J. Comput. Appl., 2011, 28, (5), pp. 2428.
        . Int. J. Comput. Appl. , 5 , 24 - 28
    11. 11)
      • O.A. Esan , T. Zuva , S.M. Ngwira .
        11. Esan, O.A., Zuva, T., Ngwira, S.M., et al: ‘Performance improvement of authentication of fingerprints using enhancement and matching algorithms’, Int. J. Emerg. Technol. Adv. Eng., 2013, 3, (2), pp. 472482.
        . Int. J. Emerg. Technol. Adv. Eng. , 2 , 472 - 482
    12. 12)
      • T. Klir .
        12. Klir, T.: ‘Fingerprint image enhancement with easy to use algorithms’. Int. Conf. of the Biometrics Special Interest Group (BIOSIG), 2015, 2015, pp. 14.
        . Int. Conf. of the Biometrics Special Interest Group (BIOSIG), 2015 , 1 - 4
    13. 13)
      • C.I. Watson , M.D. Garris , E. Tabassi .
        13. Watson, C.I., Garris, M.D., Tabassi, E., et al: ‘User's guide to NIST biometric image software (NBIS)’, 2007.
        .
    14. 14)
      • (2012)
        14. ‘FingerJetFX’: https://github.com/FingerJetFXOSE/FingerJetFXOSE, 2012.
        .
    15. 15)
      • A.R. Baig , A.R. Baig , K. Khurshid .
        15. Baig, A.R., Baig, A.R., Khurshid, K.: ‘Fingerprint enhancement over the past few years’. Fourth Int. Conf. on Aerospace Science and Engineering (ICASE), 2015, 2015, pp. 17.
        . Fourth Int. Conf. on Aerospace Science and Engineering (ICASE), 2015 , 1 - 7
    16. 16)
      • Z. Yao , J.-M. Le Bars , C. Charrier .
        16. Yao, Z., Le Bars, J.-M., Charrier, C., et al: ‘Literature review of fingerprint quality assessment and its evaluation’, IET Biometrics, 2016, 5, (3), pp. 243251.
        . IET Biometrics , 3 , 243 - 251
    17. 17)
      • D. Maltoni , D. Maio , A.K. Jain . (2009)
        17. Maltoni, D., Maio, D., Jain, A.K., et al: ‘Handbook of fingerprint recognition’ (Springer, 2009).
        .
    18. 18)
      • A. Bouaziz , A. Draa , S. Chikhi .
        18. Bouaziz, A., Draa, A., Chikhi, S.: ‘A cuckoo search algorithm for fingerprint image contrast enhancement’. Second World Conf. on Complex Systems (WCCS), 2014, 2014, pp. 678685.
        . Second World Conf. on Complex Systems (WCCS), 2014 , 678 - 685
    19. 19)
      • A. Bouaziz , A. Draa , S. Chikhi .
        19. Bouaziz, A., Draa, A., Chikhi, S.: ‘Bat algorithm for fingerprint image enhancement’. 12th Int. Symp. Programming and Systems (ISPS), 2015, 2015, pp. 18.
        . 12th Int. Symp. Programming and Systems (ISPS), 2015 , 1 - 8
    20. 20)
      • S. Ghosh , S. Roy , U. Kumar . (2014)
        20. Ghosh, S., Roy, S., Kumar, U., et al: ‘Gray level image enhancement using cuckoo search algorithm’, in Thampi, Sabu M., Gelbukh, Alexander, Mukhopadhyay, Jayanta (Eds.): ‘Advances in signal processing and intelligent recognition systems’ (Springer, 2014), pp. 275286.
        .
    21. 21)
      • T. Mahashwari , A. Asthana .
        21. Mahashwari, T., Asthana, A.: ‘Image enhancement using fuzzy technique’, Int. J. Res. Eng. Sci. Technol., 2013, 2, (2), pp. 14.
        . Int. J. Res. Eng. Sci. Technol. , 2 , 1 - 4
    22. 22)
      • O.N. Iloanusi .
        22. Iloanusi, O.N.: ‘Effective statistical-based and dynamic fingerprint preprocessing technique’, IET Biometrics, 2016, 6, (1), pp. 918.
        . IET Biometrics , 1 , 9 - 18
    23. 23)
      • M.J. Stephen , P. Reddy , V. Vasavi .
        23. Stephen, M.J., Reddy, P., Vasavi, V., et al: ‘Fingerprint image enhancement through particle swarm optimization’, Int. J. Comput. Appl., 2013, 66, (21), pp. 3440.
        . Int. J. Comput. Appl. , 21 , 34 - 40
    24. 24)
      • M.J. Stephen , P.P. Reddy .
        24. Stephen, M.J., Reddy, P.P.: ‘Design of new parameterized transformation functions and multi objective criterion for fingerprint image enhancement’, Inf. Sci. Technol., 2014, 3, (2), p. 54.
        . Inf. Sci. Technol. , 2 , 54
    25. 25)
      • W. Kabir , M.O. Ahmad , M. Swamy .
        25. Kabir, W., Ahmad, M.O., Swamy, M.: ‘Enhancement of low-quality fingerprint images by a three-stage filtering scheme’. IEEE 56th Int. Midwest Symp. on Circuits and Systems (MWSCAS), 2013, 2013, pp. 13061309.
        . IEEE 56th Int. Midwest Symp. on Circuits and Systems (MWSCAS), 2013 , 1306 - 1309
    26. 26)
      • W. Kabir .
        26. Kabir, W.: ‘A new three-stage scheme for fingerprint enhancement and its impact on fingerprint recognition’. PhD thesis, Concordia University, 2013.
        .
    27. 27)
      • M. Selvi , A. George .
        27. Selvi, M., George, A.: ‘Fbfet: fuzzy based fingerprint enhancement technique based on adaptive thresholding’. Fourth Int. Conf. on Computing, Communications and Networking Technologies (ICCCNT), 2013, 2013, pp. 15.
        . Fourth Int. Conf. on Computing, Communications and Networking Technologies (ICCCNT), 2013 , 1 - 5
    28. 28)
      • V. Hari , V.J. Raj , R. Gopikakumari .
        28. Hari, V., Raj, V.J., Gopikakumari, R.: ‘Unsharp masking using quadratic filter for the enhancement of fingerprints in noisy background’, Pattern Recognit., 2013, 46, (12), pp. 31983207.
        . Pattern Recognit. , 12 , 3198 - 3207
    29. 29)
      • S. Neethu , S. Sreelakshmi , D. Sankar .
        29. Neethu, S., Sreelakshmi, S., Sankar, D.: ‘Enhancement of fingerprint using fft×|FFT|n filter’, Proc. Comput. Sci., 2015, 46, pp. 15611568.
        . Proc. Comput. Sci. , 1561 - 1568
    30. 30)
      • S. Tarar , E. Kumar .
        30. Tarar, S., Kumar, E.: ‘Fingerprint image enhancement: iterative fast Fourier transform algorithm and performance evaluation’, Int. J. Hybrid. Inf. Technol., 2013, 6, (4), pp. 1120.
        . Int. J. Hybrid. Inf. Technol. , 4 , 11 - 20
    31. 31)
      • S.-H. Lee , H. Jeong , K.-I. Moon .
        31. Lee, S.-H., Jeong, H., Moon, K.-I.: ‘Fingerprint singular point enhancement through angular bandwidth allocation filtering’, Int. Inf. Inst., Tokyo Inf., 2015, 18, (10), p. 4237.
        . Int. Inf. Inst., Tokyo Inf. , 10 , 4237
    32. 32)
      • P. Deshmukh , S. Pathan , R. Pathan .
        32. Deshmukh, P., Pathan, S., Pathan, R.: ‘Image enhancement techniques for fingerprint identification’. Image, 2013.
        .
    33. 33)
      • J.-W. Wang , N.T. Le , C.-C. Wang .
        33. Wang, J.-W., Le, N.T., Wang, C.-C., et al: ‘Enhanced ridge structure for improving fingerprint image quality based on a wavelet domain’, IEEE Signal Process. Lett., 2015, 22, (4), pp. 390394.
        . IEEE Signal Process. Lett. , 4 , 390 - 394
    34. 34)
      • M.V. Bandur , B.M. Popovic , A.M. Raicevic .
        34. Bandur, M.V., Popovic, B.M., Raicevic, A.M., et al: ‘Improving minutiae extraction in fingerprint images through robust enhancement’. 21st Telecommunications Forum (TELFOR), 2013, 2013, pp. 506509.
        . 21st Telecommunications Forum (TELFOR), 2013 , 506 - 509
    35. 35)
      • P. Sutthiwichaiporn , V. Areekul .
        35. Sutthiwichaiporn, P., Areekul, V.: ‘Adaptive boosted spectral filtering for progressive fingerprint enhancement’, Pattern Recognit., 2013, 46, (9), pp. 24652486.
        . Pattern Recognit. , 9 , 2465 - 2486
    36. 36)
      • S.R. Borra , G.J. Reddy , E.S. Reddy .
        36. Borra, S.R., Reddy, G.J., Reddy, E.S.: ‘An efficient fingerprint enhancement technique using wave atom transform and mcs algorithm’, Proc. Comput. Sci., 2016, 89, pp. 785793.
        . Proc. Comput. Sci. , 785 - 793
    37. 37)
      • J.S. Bartunek , M. Nilsson , B. Sallberg .
        37. Bartunek, J.S., Nilsson, M., Sallberg, B., et al: ‘Adaptive fingerprint image enhancement with emphasis on preprocessing of data’, IEEE Trans. Image Process., 2013, 22, (2), pp. 644656.
        . IEEE Trans. Image Process. , 2 , 644 - 656
    38. 38)
      • D.K. Rao , G. Kishore , G. Vasavi .
        38. Rao, D.K., Kishore, G., Vasavi, G.: ‘Adaptive fingerprint enhancement’, Int. J. Future Gener. Commun. Netw., 2014, 7, (4), pp. 159170.
        . Int. J. Future Gener. Commun. Netw. , 4 , 159 - 170
    39. 39)
      • H. Geng , J. Li , J. Zhou .
        39. Geng, H., Li, J., Zhou, J., et al: ‘An improved gabor enhancement method for low-quality fingerprint images’. Applied Optics and Photonics China (AOPC2015), 2015, pp. 96751J96751J.
        . Applied Optics and Photonics China (AOPC2015) , 96751J - 96751J
    40. 40)
      • M. Fahmy , M. Thabet .
        40. Fahmy, M., Thabet, M.: ‘A novel scheme for fingerprint enhancement’. 31st National Radio Science Conf. (NRSC), 2014, 2014, pp. 142149.
        . 31st National Radio Science Conf. (NRSC), 2014 , 142 - 149
    41. 41)
      • S. Mohammedsayeemuddin , S.K. Gonsai , D. Vandra .
        41. Mohammedsayeemuddin, S., Gonsai, S.K., Vandra, D.: ‘Efficient fingerprint image enhancement algorithm based on Gabor filter’, Int. J. Res. Eng. Technol., 2014, 3, (4), pp. 809813.
        . Int. J. Res. Eng. Technol. , 4 , 809 - 813
    42. 42)
      • R.J.K. Nilam , R. Joshi .
        42. Nilam, R.J.K., Joshi, R.: ‘Adaptive fingerprint image enhancement for low-quality of images by learning from the images and features extraction’, Int. Journal of Software and Hardware Research in Engineering, 2014, 2, pp. 139143.
        . Int. Journal of Software and Hardware Research in Engineering , 139 - 143
    43. 43)
      • M. Kočevar , B. Kotnik , A. Chowdhury .
        43. Kočevar, M., Kotnik, B., Chowdhury, A., et al: ‘Real-time fingerprint image enhancement with a two-stage algorithm and block–local normalization’, J. Real-Time Image Process., 2014, pp. 110.
        . J. Real-Time Image Process. , 1 - 10
    44. 44)
      • M. Ghafoor , I.A. Taj , W. Ahmad .
        44. Ghafoor, M., Taj, I.A., Ahmad, W., et al: ‘Efficient 2-fold contextual filtering approach for fingerprint enhancement’, IET Image Process., 2014, 8, (7), pp. 417425.
        . IET Image Process. , 7 , 417 - 425
    45. 45)
      • M. Zahedi , O.R. Ghadi .
        45. Zahedi, M., Ghadi, O.R.: ‘Combining Gabor filter and FFT for fingerprint enhancement based on a regional adaption method and automatic segmentation’, Signal Image Video Process., 2015, 9, (2), pp. 267275.
        . Signal Image Video Process. , 2 , 267 - 275
    46. 46)
      • J. Yang , N. Xiong , A.V. Vasilakos .
        46. Yang, J., Xiong, N., Vasilakos, A.V.: ‘Two-stage enhancement scheme for low-quality fingerprint images by learning from the images’, IEEE Trans. Hum.-Mach. Syst., 2013, 43, (2), pp. 235248.
        . IEEE Trans. Hum.-Mach. Syst. , 2 , 235 - 248
    47. 47)
      • T.M. Khan , M.A. Khan , Y. Kong .
        47. Khan, T.M., Khan, M.A., Kong, Y.: ‘Fingerprint image enhancement using multi-scale DDFB based diffusion filters and modified Hong filters’, Opt.-Int. J. Light Electron Opt., 2014, 125, (16), pp. 42064214.
        . Opt.-Int. J. Light Electron Opt. , 16 , 4206 - 4214
    48. 48)
      • H.H. Ahmed , H.M. Kelash , M. Tolba .
        48. Ahmed, H.H., Kelash, H.M., Tolba, M., et al: ‘Fingerprint image enhancement based on threshold fast discrete curvelet transform (FDCT) and Gabor filters’, Int. J. Comput. Appl., 2015, 110, (3), pp. 3341.
        . Int. J. Comput. Appl. , 3 , 33 - 41
    49. 49)
      • V. Divya .
        49. Divya, V.: ‘Adaptive fingerprint image enhancement based on spatial contextual filtering and preprocessing of data’, Int. J. Comput. Technol., 2014, 1, pp. 5665.
        . Int. J. Comput. Technol. , 56 - 65
    50. 50)
      • P. Chauhan .
        50. Chauhan, P.: ‘Steps in fingerprint enhancement techniques’, Int. J., 2014, 4, (7), pp. 938942.
        . Int. J. , 7 , 938 - 942
    51. 51)
      • A.R. Baig , I. Huqqani , K. Khurshid .
        51. Baig, A.R., Huqqani, I., Khurshid, K.: ‘Enhancement of latent fingerprint images with segmentation perspective’. 11th Int. Conf. on Signal-Image Technology & Internet-Based Systems (SITIS), 2015, 2015, pp. 132138.
        . 11th Int. Conf. on Signal-Image Technology & Internet-Based Systems (SITIS), 2015 , 132 - 138
    52. 52)
      • A. Ahmad , I. Arshad , G. Raja .
        52. Ahmad, A., Arshad, I., Raja, G.: ‘Partial fingerprint image enhancement using region division technique and morphological transform’, Nucleus, 2015, 52, (2), pp. 6370.
        . Nucleus , 2 , 63 - 70
    53. 53)
      • T.M. Khan , M.A. Khan , Y. Kong .
        53. Khan, T.M., Khan, M.A., Kong, Y., et al: ‘Stopping criterion for linear anisotropic image diffusion: a fingerprint image enhancement case’, EURASIP J. Image Video Process., 2016, 2016, (1), pp. 120.
        . EURASIP J. Image Video Process. , 1 , 1 - 20
    54. 54)
      • M.B. Abdallah , J. Malek , A.T. Azar .
        54. Abdallah, M.B., Malek, J., Azar, A.T., et al: ‘Adaptive noise-reducing anisotropic diffusion filter’, Neural Comput. Appl., 2016, 27, (5), pp. 12731300.
        . Neural Comput. Appl. , 5 , 1273 - 1300
    55. 55)
      • C. Gottschlich .
        55. Gottschlich, C.: ‘Curved-region-based ridge frequency estimation and curved Gabor filters for fingerprint image enhancement’, IEEE Trans. Image Process., 2012, 21, (4), pp. 22202227.
        . IEEE Trans. Image Process. , 4 , 2220 - 2227
    56. 56)
      • M.Y. Khachay , M. Pasynkov .
        56. Khachay, M.Y., Pasynkov, M.: ‘Theoretical approach to developing efficient algorithms of fingerprint enhancement’. Int. Conf. on Analysis of Images, Social Networks and Texts, 2015, pp. 8395.
        . Int. Conf. on Analysis of Images, Social Networks and Texts , 83 - 95
    57. 57)
      • Y. Mei , B. Zhao , Y. Zhou .
        57. Mei, Y., Zhao, B., Zhou, Y., et al: ‘Orthogonal curved-line gabor filter for fast fingerprint enhancement’, Electron. Lett., 2014, 50, (3), pp. 175177.
        . Electron. Lett. , 3 , 175 - 177
    58. 58)
      • M.K. Sharma , J. Joseph , P. Senthilkumaran .
        58. Sharma, M.K., Joseph, J., Senthilkumaran, P.: ‘Directional edge enhancement using superposed vortex filter’, Opt. Laser Technol., 2014, 57, pp. 230235.
        . Opt. Laser Technol. , 230 - 235
    59. 59)
      • L. Cătălin .
        59. Cătălin, L.: ‘Development of optimal filters obtained through convolution methods, used for fingerprint image enhancement and restoration’, Public Adm., 2014, 14, (2), p. 20.
        . Public Adm. , 2 , 20
    60. 60)
      • J. Feng , J. Zhou , A.K. Jain .
        60. Feng, J., Zhou, J., Jain, A.K.: ‘Orientation field estimation for latent fingerprint enhancement’, IEEE Trans. Pattern Anal. Mach. Intell., 2013, 35, (4), pp. 925940.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 4 , 925 - 940
    61. 61)
      • K. Cao , E. Liu , A.K. Jain .
        61. Cao, K., Liu, E., Jain, A.K.: ‘Segmentation and enhancement of latent fingerprints: a coarse to fine ridge structure dictionary’, IEEE Trans. Pattern Anal. Mach. Intell., 2014, 36, (9), pp. 18471859.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 9 , 1847 - 1859
    62. 62)
      • A.K. Jain , K. Cao .
        62. Jain, A.K., Cao, K.: ‘Fingerprint image analysis: role of orientation patch and ridge structure dictionaries’, Geom. Driven Stat., 2015, 121, p. 288.
        . Geom. Driven Stat. , 288
    63. 63)
      • A.K. Jain , S.S. Arora , L. Best-Rowden .
        63. Jain, A.K., Arora, S.S., Best-Rowden, L., et al: ‘Giving infants an identity: fingerprint sensing and recognition’. Proc. of the Eighth Int. Conf. on Information and Communication Technologies and Development, 2016, p. 29.
        . Proc. of the Eighth Int. Conf. on Information and Communication Technologies and Development , 29
    64. 64)
      • X. Wang , M. Liu . (2013)
        64. Wang, X., Liu, M.: ‘Fingerprint enhancement via sparse representation’, in Sun, Zhenan, Shan, Shiguan, Yang, Gongping, Zhou, Jie, Wang, Yunhong, Yin, YiLong (Eds.): ‘Biometric recognition’ (Springer, 2013), pp. 193200.
        .
    65. 65)
      • M. Liu , X. Chen , X. Wang .
        65. Liu, M., Chen, X., Wang, X.: ‘Latent fingerprint enhancement via multi-scale patch based sparse representation’, IEEE Trans. Inf. Forensics Sec., 2015, 10, (1), pp. 615.
        . IEEE Trans. Inf. Forensics Sec. , 1 , 6 - 15
    66. 66)
      • S. Kumar , R.L. Velusamy .
        66. Kumar, S., Velusamy, R.L.: ‘Latent fingerprint preprocessing: orientation field correction using region wise dictionary’. Int. Conf. on Advances in Computing, Communications and Informatics (ICACCI), 2015, 2015, pp. 12381243.
        . Int. Conf. on Advances in Computing, Communications and Informatics (ICACCI), 2015 , 1238 - 1243
    67. 67)
      • P. Schuch , S. Schulz , C. Busch .
        67. Schuch, P., Schulz, S., Busch, C.: ‘De-convolutional auto-encoder for enhancement of fingerprint samples’. 6th Int. Conf. on Image Processing Theory Tools and Applications (IPTA), 2016, 2016, pp. 17.
        . 6th Int. Conf. on Image Processing Theory Tools and Applications (IPTA), 2016 , 1 - 7
    68. 68)
      • M.A. Khan , T.M. Khan .
        68. Khan, M.A., Khan, T.M.: ‘Fingerprint image enhancement using data driven directional filter bank’, Opt.-Int. J. Light Electron Opt., 2013, 124, (23), pp. 60636068.
        . Opt.-Int. J. Light Electron Opt. , 23 , 6063 - 6068
    69. 69)
      • F. Liu , D. Zhang .
        69. Liu, F., Zhang, D.: ‘3D fingerprint reconstruction system using feature correspondences and prior estimated finger model’, Pattern Recognit., 2014, 47, (1), pp. 178193.
        . Pattern Recognit. , 1 , 178 - 193
    70. 70)
      • K. Zuiderveld . (1994)
        70. Zuiderveld, K.: ‘Contrast limited adaptive histogram equalization, in graphics gems IV’ (Academic Press Professional, Inc., 1994), pp. 474485.
        .
    71. 71)
      • G. Bradski . (2000)
        71. Bradski, G.: ‘Dr. Dobb's Journal of Software Tools’, 2000.
        .
    72. 72)
      • L. Hong , Y. Wan , A. Jain .
        72. Hong, L., Wan, Y., Jain, A.: ‘Fingerprint image enhancement: algorithm and performance evaluation’, IEEE Trans. Pattern Anal. Mach. Intell., 1998, 20, (8), pp. 777789.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 8 , 777 - 789
    73. 73)
      • S. Greenberg , M. Aladjem , D. Kogan .
        73. Greenberg, S., Aladjem, M., Kogan, D., et al: ‘Fingerprint image enhancement using filtering techniques’. Proc. 15th Int. Conf. on Pattern Recognition, 2000, 2000, vol. 3, pp. 322325.
        . Proc. 15th Int. Conf. on Pattern Recognition, 2000 , 322 - 325
    74. 74)
      • C. Watson , G. Candela , P. Grother .
        74. Watson, C., Candela, G., Grother, P.: ‘Comparison of FFT fingerprint filtering methods for neural network classification’. NISTIR, 1994.
        . NISTIR
    75. 75)
      • A. Buades , T.M. Le , J.-M. Morel .
        75. Buades, A., Le, T.M., Morel, J.-M., et al: ‘Fast cartoon + texture image filters’, IEEE Trans. Image Process., 2010, 19, (8), pp. 19781986.
        . IEEE Trans. Image Process. , 8 , 1978 - 1986
    76. 76)
      • J. Zhang , R. Lai , C.-C.J. Kuo .
        76. Zhang, J., Lai, R., Kuo, C.-C.J.: ‘Latent fingerprint segmentation with adaptive total variation model’. 5th IAPR Int. Conf. on Biometrics (ICB), 2012, 2012, pp. 189195.
        . 5th IAPR Int. Conf. on Biometrics (ICB), 2012 , 189 - 195
    77. 77)
      • S. Yoon , K. Cao , E. Liu .
        77. Yoon, S., Cao, K., Liu, E., et al: ‘LFIQ: Latent fingerprint image quality’. IEEE Sixth Int. Conf. on Biometrics: Theory, Applications and Systems (BTAS), 2013, 2013, pp. 18.
        . IEEE Sixth Int. Conf. on Biometrics: Theory, Applications and Systems (BTAS), 2013 , 1 - 8
    78. 78)
      • E. Tabassi , C. Wilson , C. Watson .
        78. Tabassi, E., Wilson, C., Watson, C.: ‘Nist fingerprint image quality’, NIST Research Report NISTIR7151, 2004, pp. 3436.
        . , 34 - 36
    79. 79)
      • (2016)
        79. NIST: ‘NFIQ2.0: NIST Fingerprint Image Quality 2.0’. Available at http://www.nist.gov/itl/iad/ig/development\_nfiq\_2.cfm, 2016.
        .
    80. 80)
      • 80. NIST: ‘NFIQ 2.0 – NIST fingerprint image quality’. Technical Report, National Institute of Standards and Technology, 2016.
        .
    81. 81)
      • M.A. Olsen , V. Šmida , C. Busch . (2015)
        81. Olsen, M.A., Šmida, V., Busch, C.: ‘Finger image quality assessment features – definitions and evaluation’ (IET Biometrics, 2015).
        .
    82. 82)
      • D. Maio , D. Maltoni , R. Cappelli .
        82. Maio, D., Maltoni, D., Cappelli, R., et al: ‘FVC2000: fingerprint verification competition’, IEEE Trans. Pattern Anal. Mach. Intell., 2002, 24, (3), pp. 402412.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 3 , 402 - 412
    83. 83)
      • D. Maio , D. Maltoni , R. Cappelli .
        83. Maio, D., Maltoni, D., Cappelli, R., et al: ‘FVC2002: second fingerprint verification competition’. 16th Int. Conf. on Pattern Recognition, 2002 Proc., 2002, vol. 3, pp. 811814.
        . 16th Int. Conf. on Pattern Recognition, 2002 Proc. , 811 - 814
    84. 84)
      • D. Maio , D. Maltoni , R. Cappelli . (2004)
        84. Maio, D., Maltoni, D., Cappelli, R., et al: ‘FVC2004: third fingerprint verification competition, in biometric authentication’ (Springer, 2004), pp. 17.
        .
    85. 85)
      • R. Cappelli , M. Ferrara , A. Franco .
        85. Cappelli, R., Ferrara, M., Franco, A., et al: ‘Fingerprint verification competition 2006’, Biom. Technol. Today, 2007, 15, (7), pp. 79.
        . Biom. Technol. Today , 7 , 7 - 9
    86. 86)
      • J. Ortega-Garcia , J. Fierrez-Aguilar , D. Simon .
        86. Ortega-Garcia, J., Fierrez-Aguilar, J., Simon, D., et al: ‘MCYT baseline corpus: a bimodal biometric database’. Vision, Image and Signal Processing, IEE Proc., 2003, vol. 150, pp. 395401.
        . Vision, Image and Signal Processing, IEE Proc. , 395 - 401
    87. 87)
      • C.I. Watson .
        87. Watson, C.I.: ‘NIST special database 14: Mated fingerprint cards pairs 2 version 2’. Technical Report, Citeseer, 2001.
        .
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2016.0088
Loading

Related content

content/journals/10.1049/iet-bmt.2016.0088
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address