access icon free LRR-TTK DL for face recognition

Dictionary learning (DL) technique has received a great interest recently, due to its significant role in feature extraction. Although many DL-based methods have been presented, some of them still suffer from the lack of discriminative features, especially for the local manifold features. To mitigate this problem, the authors propose a novel DL method named low-rank representation based on twin tensor kernel (LRR-TTK) DL for face recognition in this study. Specifically, the training samples are projected to a high-dimensional space with TTK. Then, they extract the local manifold features and spatial features (representation coefficients) hidden in the facial images by TT locality preserving projection. In addition, powered by LRR reconstruction and DL theory, much more discriminative features are obtained, which can improve the recognition rate greatly. Comprehensive experimental results at AR, extended Yale-B and FERET face databases demonstrate the superiority of their proposed method.

Inspec keywords: feature extraction; tensors; face recognition; image representation; learning (artificial intelligence)

Other keywords: dictionary learning technique; FERET face database; TT locality preserving projection; extended Yale-B face database; DL theory; AR face database; face recognition; twin tensor kernel; low-rank representation; representation coefficients; local manifold feature extraction; LRR-TTK DL; spatial feature extraction; LRR reconstruction

Subjects: Knowledge engineering techniques; Image recognition; Computer vision and image processing techniques; Algebra; Algebra

References

    1. 1)
      • 19. Liu, G., Lin, Z., Yan, S., et al: ‘Robust recovery of subspace structures by low-rank representation’, ArXiv preprint arXiv:1010.2955, 2010.
    2. 2)
      • 18. Liu, G., Lin, Z., Yu, Y.: ‘Robust subspace segmentation by low-rank representation’. Proc. of the 27th Int. Conf. on Machine Learning, 2010, pp. 663670.
    3. 3)
      • 2. Ma, L., Wang, C., Xiao, B., et al: ‘Sparse representation for face recognition based on discriminative low-rank dictionary learning’. Proc. of IEEE Conf. on Computer Vision and Pattern Recognition, 2012, pp. 25862593.
    4. 4)
      • 11. Yang, M., Zhang, L.: ‘Gabor feature based sparse representation for face recognition with Gabor occlusion dictionary’. Proc. of the Computer Vision, 2010, pp. 448461.
    5. 5)
      • 25. Zhang, L., Zhang, L., Tao, D., et al: ‘Tensor discriminative locality alignment for hyperspectral image spectral-spatial feature extraction’, IEEE Trans. Geosci. Remote Sens., 2013, 51, (1), pp. 242256.
    6. 6)
      • 31. Beck, A., Teboulle, M.: ‘A fast iterative shrink age-thresholding algorithm for linear inverse problems’, SIAMJ. Imaging Sci., 2009, 2, pp. 183202.
    7. 7)
      • 17. Zhu, G., Yan, S., Ma, Y.: ‘Image tag refinement towards low-rank, content-tag prior and error sparsity’. Proc. of the Int. Conf. on Multimedia, 2010, pp. 461470.
    8. 8)
      • 4. Yang, M., Zhang, L., Feng, X., et al: ‘Fisher discrimination dictionary learning for sparse representation’. Proc. of the 13th IEEE Int. Conf. on Computer Vision, 2011, pp. 543550.
    9. 9)
      • 37. Gärtner, T., Lloyd, J.W., Flach, P.A.: ‘Kernels for structured data’. Proc. of the 12th Int. Conf. on Inductive Logic Programming, 2002.
    10. 10)
      • 27. Liu, Z., Sarkar, S.: ‘Simplest representation yet for gait recognition: averaged silhouette’. IEEE CVPR, 2004, vol. 4, pp. 211214.
    11. 11)
      • 24. Zhang, L., Zhang, L., Tao, D., et al: ‘A multifeature tensor for remote-sensing target recognition’, IEEE Geosci. Remote Sens. Lett., 2011, 8, (2), pp. 374378.
    12. 12)
      • 28. He, X., Cai, D., Niyogi, P.: ‘Tensor subspace analysis’. NIPS, 2005, vol. 17, pp. 499506.
    13. 13)
      • 12. Yang, J., Yu, K., Gong, Y., et al: ‘Linear spatial pyramid matching using sparse coding for image classification’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2009, pp. 17941801.
    14. 14)
      • 21. Zhang, C., Liu, J., Tian, Q., et al: ‘Image classification by non-negative sparse coding, low-rank and sparse decomposition’. Proc. of the Computer Vision and Pattern Recognition, 2011, pp. 16731680.
    15. 15)
      • 8. Wright, S.J., Nowak, R.D., Figueiredo, M.A.: ‘Sparse reconstruction by separable approximation’, IEEE Trans. Signal Process., 2009, 57, pp. 24792493.
    16. 16)
      • 3. Jiang, Z., Lin, Z., Davis, L.S.: ‘Label consistent K-SVD: learning a discriminative dictionary for recognition’, IEEE Trans. Pattern Anal. Mach. Intell., 2013, 35, pp. 26512664.
    17. 17)
      • 15. Cui, X., Huang, J., Zhang, S., et al: ‘Background subtraction using low rank and group sparsity constraints computer vision – ECCV 2012’ (Springer, Berlin Heidelberg, 2012), pp. 612625.
    18. 18)
      • 39. Belkin, M., Niyogi, P.: ‘Laplacian eigenmaps and spectral techniques for embedding and clustering’. Advances in Neural Information Processing Systems, Vancouver, British Columbia, Canada, 2002, vol. 14, (6), pp. 585591.
    19. 19)
      • 9. Li, X., Pang, Y., Yuan, Y.: ‘L1-norm-based 2DPCA’, IEEE Trans. Syst. Man Cybern. B, 2010, 40, pp. 11701175.
    20. 20)
      • 34. Tropp, J.A.: ‘Greed is good: algorithmic results for sparse approximation’, IEEE Trans. Inf. Theory, 2004, 50, (10), pp. 22312242.
    21. 21)
      • 20. Chen, J., Yi, Z.: ‘Sparse representation for face recognition by discriminative low rank matrix recovery’, J. Vis. Commun. Image Represent., 2014, 25, pp. 763773.
    22. 22)
      • 36. Schölkopf, B., Smola, A.: ‘Learning with kernels: support vector machines, regularization, optimization, and beyond’ (The MIT Press, Cambridge, 2002).
    23. 23)
      • 30. Lin, Z., Chen, M., Ma, Y.: ‘The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices’, arXiv preprintar Xiv: 1009.5055, 2010.
    24. 24)
      • 7. Mairal, J., Sapiro, G., Elad, M.: ‘Learning multiscale sparse representations for image and video restoration’, DTIC Document, 2007.
    25. 25)
      • 26. Yang, J., Zhang, D., Frangi, A.F., et al: ‘Two-dimensional PCA: a new approach to appearance-based face representation and recognition’, IEEE Trans. Pattern Anal. Mach. Intell., 2004, 26, (1), pp. 131137.
    26. 26)
      • 40. Zhang, L., Yang, M., Feng, X.: ‘Sparse representation or collaborative representation: which helps face recognition?’. Proc. of the IEEE Int. Conf. on Computer Vision, 2011, pp. 471478.
    27. 27)
      • 1. Lin, T., Liu, S., Zha, H.: ‘Incoherent dictionary learning for sparse representation’. Proc. of the 21st Int. Conf. on Pattern Recognition, 2012, pp. 12371240.
    28. 28)
      • 6. Rao, S.R., Tron, R., Vidal, R., et al: ‘Motion segmentation via robust subspace separation in the presence of outlying, incomplete, or corrupted trajectories’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2008, pp. 18.
    29. 29)
      • 38. Hardoon, D.R., Shawe-Taylor, J.: ‘Decomposing the tensor kernel support vector machine for neuroscience data with structured labels’, Mach. Learn., 2010, 79, pp. 2946.
    30. 30)
      • 23. Murase, H., Nayar, S.: ‘Visual learning and recognition of 3D objects from appearance’, Int. J. Comput. Vis., 1995, 14, (1), pp. 524.
    31. 31)
      • 10. Wright, J., Yang, A.Y., Ganesh, A., et al: ‘Robust face recognition via sparse representation’, IEEE Trans. Pattern Anal. Mach. Intell., 2009, 31, pp. 210227.
    32. 32)
      • 29. Bertsekas, D.P.: ‘Computer science and applied mathematics, constrained optimization and Lagrange multiplier methods, 1’ (Academic Press, Boston, 1982).
    33. 33)
      • 22. Seung, H., Lee, D.: ‘The manifold ways of perception’, Science, 2000, 290, (22), pp. 22682269.
    34. 34)
      • 14. Gao, S., Tsang, I.W., Chia, L.-T., et al: ‘Local features are not lonely–Laplacian sparse coding for image classification’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2010, pp. 35553561.
    35. 35)
      • 16. Zhang, T., Ghanem, B., Liu, S., et al: ‘Low-rank sparse learning for robust visual tracking computer vision–ECCV 2012’ (Springer, Berlin, Heidelberg, 2012), pp. 470484.
    36. 36)
      • 13. Wang, J., Yang, J., Yu, K., et al: ‘Locality-constrained linear coding for image classification’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2010, pp. 33603367.
    37. 37)
      • 5. Yang, J., Wright, J., Huang, T., et al: ‘Image super-resolution as sparse representation of raw image patches’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2008, pp. 18.
    38. 38)
      • 32. Aharon, M., Elad, M., Bruckstein, A.M.: ‘K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation’, IEEE Trans. Signal Process., 2006, 54, (11), pp. 43114322.
    39. 39)
      • 33. Torki, M., Elgammal, A.: ‘Putting local features on a manifold’. IEEE Conf. on Computer Vision & Pattern Recognition, 2010, pp. 17431750.
    40. 40)
      • 35. Engan, K., Aase, S.O., Husoy, J.H.: ‘Method of optimal directions for frame design’. Proc. of IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, 1999, pp. 24432446.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2016.0081
Loading

Related content

content/journals/10.1049/iet-bmt.2016.0081
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading