http://iet.metastore.ingenta.com
1887

Backward face ageing model (B-FAM) for digital face image rejuvenation

Backward face ageing model (B-FAM) for digital face image rejuvenation

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Facial ageing modelling has been an active research topic in the field of anthropology. Considering the fact that ageing is a non-uniform and a non-linear process for different face types (e.g. origins, gender etc.), dealing with a reliable face-ageing model may considerably help investigators working in some specific fields such as forensics. Unlike numerous studies dealing with forward or predictive face models, in this study, the authors propose a backward model aiming at estimating childhood face images using their corresponding adult face appearance as an input. For the proposed approach, face contour and different components are modified non-linearly, based on an estimated geometrical model. On the other hand, the face texture is estimated by mapping a reference face texture to the estimated geometrical model. This approach will show that it will be possible to ‘digitally’ rejuvenate an adult person's face down to it being 3–4 years old. For evaluation purposes, a database has been created from 112 subjects. Results have been evaluated using both objective (face recognition system) and subjective (human perception) criteria. The most promising and interesting results will be highlighted further ahead.

References

    1. 1)
      • M.A. Farage , K.W. Miller , P. Elsner .
        1. Farage, M.A., Miller, K.W., Elsner, P., et al: ‘Intrinsic and extrinsic factors in skin ageing: a review’, Int. J. Cosmet. Sci., 2008, 30, (2), pp. 8795.
        . Int. J. Cosmet. Sci. , 2 , 87 - 95
    2. 2)
      • A.V. Rawlings .
        2. Rawlings, A.V.: ‘Ethnic skin types: are there differences in skin structure and function?’, 2006, 28, (2), pp. 7993.
        . , 2 , 79 - 93
    3. 3)
      • N. Wang , X. Gao , D. Tao .
        3. Wang, N., Gao, X., Tao, D., et al: ‘Facial feature point detection: a comprehensive survey’, Neurocomputing, 2017.
        .
    4. 4)
      • T.N. Shewaye .
        4. Shewaye, T.N.: ‘Age group and gender recognition from human facial images’, Ethiopian Society of Electrical Engineers 6th Scientific Conference on Electrical Engineering, 2012.
        . Ethiopian Society of Electrical Engineers 6th Scientific Conference on Electrical Engineering
    5. 5)
      • H. Heafner .
        5. Heafner, H.: ‘Age-progression technology and its application to law enforcement’. 24th AIPR Workshop on Tools and Techniques for Modeling and Simulation, 1996, pp. 4955.
        . 24th AIPR Workshop on Tools and Techniques for Modeling and Simulation , 49 - 55
    6. 6)
      • D.M. Burt , D.I. Perrett .
        6. Burt, D.M., Perrett, D.I.: ‘Perception of age in adult Caucasian male faces: computer graphic manipulation of shape and colour information’, Proc. Biol. Sci., 1995, 259, (1355), pp. 137143.
        . Proc. Biol. Sci. , 1355 , 137 - 143
    7. 7)
      • I. Pitanguy , D. Pamplona , H.I. Weber .
        7. Pitanguy, I., Pamplona, D., Weber, H.I., et al: ‘Numerical modeling of facial aging’, Plast. Reconstr. Surg., 1998, 102, (1), pp. 200204.
        . Plast. Reconstr. Surg. , 1 , 200 - 204
    8. 8)
      • B. Tiddeman , M. Burt , D. Perrett .
        8. Tiddeman, B., Burt, M., Perrett, D.: ‘Prototyping and transforming facial textures for perception research’, IEEE Comput. Graph. Appl., 2001, 21, (5), pp. 4250.
        . IEEE Comput. Graph. Appl. , 5 , 42 - 50
    9. 9)
      • B.P. Tiddeman , M.R. Stirrat , D.I. Perrett .
        9. Tiddeman, B.P., Stirrat, M.R., Perrett, D.I.: ‘Towards realism in facial image transformation: results of a wavelet MRF method’, Comput. Graph. Forum, 2005, 24, (3), pp. 449456.
        . Comput. Graph. Forum , 3 , 449 - 456
    10. 10)
      • N. Ramanathan , R. Chellappa .
        10. Ramanathan, N., Chellappa, R.: ‘Modeling age progression in young faces’. Conf. on Computer Vision and Pattern Recognition, 2006, pp. 387394.
        . Conf. on Computer Vision and Pattern Recognition , 387 - 394
    11. 11)
      • J. Suo , F. Min , S. Zhu .
        11. Suo, J., Min, F., Zhu, S., et al: ‘A multi-resolution dynamic model for face aging simulation’. IEEE Conf. on Computer Vision and Pattern Recognition, 2007, pp. 18.
        . IEEE Conf. on Computer Vision and Pattern Recognition , 1 - 8
    12. 12)
      • N. Ramanathan , R. Chellappa .
        12. Ramanathan, N., Chellappa, R.: ‘Modeling shape and textural variations in aging faces’. 2008 8th IEEE Int. Conf. on Automatic Face Gesture Recognition, 2008, pp. 18.
        . 2008 8th IEEE Int. Conf. on Automatic Face Gesture Recognition , 1 - 8
    13. 13)
      • I. Kemelmacher-Shlizerman , S. Suwajanakorn , S.M. Seitz .
        13. Kemelmacher-Shlizerman, I., Suwajanakorn, S., Seitz, S.M.: ‘Illumination-aware age progression’. 2014 IEEE Conf. on Computer Vision and Pattern Recognition, 2014, pp. 33343341.
        . 2014 IEEE Conf. on Computer Vision and Pattern Recognition , 3334 - 3341
    14. 14)
      • G.J. Edwards , A. Lanitis , C.J. Taylor .
        14. Edwards, G.J., Lanitis, A., Taylor, C.J., et al: ‘Statistical models of face images — improving specificity’, Image Vis. Comput., 1998, 16, (3), pp. 203211.
        . Image Vis. Comput. , 3 , 203 - 211
    15. 15)
      • N. Ramanathan , R. Chellappa .
        15. Ramanathan, N., Chellappa, R.: ‘How would you look as you age ?’. 2009 16th IEEE Int. Conf. on Image Processing (ICIP), 2009, pp. 5356.
        . 2009 16th IEEE Int. Conf. on Image Processing (ICIP) , 53 - 56
    16. 16)
      • N. Ramanathan , R. Chellappa , S. Biswas .
        16. Ramanathan, N., Chellappa, R., Biswas, S.: ‘Computational methods for modeling facial aging: a survey’, J. Vis. Lang. Comput., 2009, 20, (3), pp. 131144.
        . J. Vis. Lang. Comput. , 3 , 131 - 144
    17. 17)
      • N. Ramanathan , R. Chellappa , S. Biswas .
        17. Ramanathan, N., Chellappa, R., Biswas, S.: ‘Age progression in human faces: a survey’, J. Vis. Lang. Comput., 2009, 15, pp. 33493361.
        . J. Vis. Lang. Comput. , 3349 - 3361
    18. 18)
      • A. Bastanfard , O. Bastanfard , H. Takahashi .
        18. Bastanfard, A., Bastanfard, O., Takahashi, H., et al: ‘Toward anthropometrics simulation of face rejuvenation and skin cosmetic’, Comp. Anim. Virtual Worlds, 2004, 15, (3–4), pp. 347352.
        . Comp. Anim. Virtual Worlds , 347 - 352
    19. 19)
      • G. Guo .
        19. Guo, G.: ‘Digital anti-aging in face images’. 2011 Int. Conf. on Computer Vision, 2011, pp. 25102515.
        . 2011 Int. Conf. on Computer Vision , 2510 - 2515
    20. 20)
      • B.J. Dixson , P.L. Vasey .
        20. Dixson, B.J., Vasey, P.L.: ‘Beards augment perceptions of men's age, social status, and aggressiveness, but not attractiveness’, Behav. Ecol., 2012, 23, (3), pp. 481490.
        . Behav. Ecol. , 3 , 481 - 490
    21. 21)
      • S. Courrèges , G. Kaminski , E. Mauger .
        21. Courrèges, S., Kaminski, G., Mauger, E., et al: ‘Impact of make-up on facial contrast and perceived age’. European Conf. on Visual Perception, 2013.
        . European Conf. on Visual Perception
    22. 22)
      • M.G.H.D.H. Enlow . (2008)
        22. Enlow, M.G.H.D.H.: ‘Facial form and pattern’, in ‘Essentials of facial growth’ (Needham Press, 2008, 2nd edn.), pp. 122145.
        .
    23. 23)
      • J. Hall , J. Allanson , K. Gripp . (2006)
        23. Hall, J., Allanson, J., Gripp, K., et al: ‘Handbook of physical measurements’ in Enlow, Donald H. (Ed.): (Oxford University Press, 2006), pp. 84168.
        .
    24. 24)
      • A.D. Dixon , D.A.N. Hoyte , O. Ronning . (1997)
        24. Dixon, A.D., Hoyte, D.A.N., Ronning, O.: ‘Fundamentals of craniofacial growth’ (CRC Press, 1997).
        .
    25. 25)
      • L.G. Farkas . (1994)
        25. Farkas, L.G.: ‘Anthropometry of the head and face’ (Raven Press, 1994).
        .
    26. 26)
      • T.F. Cootes , G.J. Edwards , C.J. Taylor .
        26. Cootes, T.F., Edwards, G.J., Taylor, C.J.: ‘Active appearance models’, IEEE Trans. Pattern Anal. Mach. Intell., 2001, 23, (6), pp. 681685.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 6 , 681 - 685
    27. 27)
      • L. Dang , F. Kong .
        27. Dang, L., Kong, F.: ‘Facial feature point extraction using a new improved active shape model’. 2010 3rd Int. Congress on Image and Signal Processing, 2010, pp. 944948.
        . 2010 3rd Int. Congress on Image and Signal Processing , 944 - 948
    28. 28)
      • M. Nuruzzaman , A. Hussain , H. Mohamad Tahir .
        28. Nuruzzaman, M., Hussain, A., Mohamad Tahir, H., et al: ‘Feature extraction using active appearance model algorithm with Bayesian classification approach’. 4 th Int. Conf. on Computing and Informatics (ICOCI 2013), 2013, pp. 94102.
        . 4 th Int. Conf. on Computing and Informatics (ICOCI 2013) , 94 - 102
    29. 29)
      • J. Savitha , A. Senthil Kumar .
        29. Savitha, J., Senthil Kumar, A.: ‘Active appearance model and PCA based face recognition system’, Int. J. Comput. Sci. Mob. Comput., 2015, 4, (4), pp. 722731.
        . Int. J. Comput. Sci. Mob. Comput. , 4 , 722 - 731
    30. 30)
      • D. Cristinacce , T. Cootes .
        30. Cristinacce, D., Cootes, T.: ‘Automatic feature localisation with constrained local models’, Pattern Recognit., 2008, 41, (10), pp. 30543067.
        . Pattern Recognit. , 10 , 3054 - 3067
    31. 31)
      • S. Schaefer , T. McPhail , J. Warren .
        31. Schaefer, S., McPhail, T., Warren, J.: ‘Image deformation using moving least squares’. ACM SIGGRAPH 2006 Papers, 2006, pp. 533540.
        . ACM SIGGRAPH 2006 Papers , 533 - 540
    32. 32)
      • F.L. Bookstein .
        32. Bookstein, F.L.: ‘Principal warps: thin-plate splines and the decomposition of deformations’, IEEE Trans. Pattern Anal. Mach. Intell., 1989, 11, (6), pp. 567585.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 6 , 567 - 585
    33. 33)
      • J.C. Kolar , E.M. Salter . (1997)
        33. Kolar, J.C., Salter, E.M.: ‘Craniofacial anthropometry: practical measurement of the head and face for clinical, surgical, and research use’ (Charles C Thomas Pub Ltd., 1997).
        .
    34. 34)
      • C. Geng , X. Jiang .
        34. Geng, C., Jiang, X.: ‘Face alignment based on the multi-scale local features’. 2012 IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), 2012, pp. 15171520.
        . 2012 IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP) , 1517 - 1520
    35. 35)
      • 35. Face Time-Machine Database (FaceTiM V. 1. 0). Available at http://www.amine-nait-ali.org/facetim.
        .
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2016.0079
Loading

Related content

content/journals/10.1049/iet-bmt.2016.0079
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address