Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Multi-frame super-resolution for long range captured iris polar image

In this study, a framework is proposed to super-resolve the long range captured iris polar images. In this study, modified diamond search and enhanced total variation algorithms are proposed to super-resolve the long range captured iris polar multi-frame images. The framework is tested on Chinese Academy of Sciences' Institute of Automation (CASIA) long range iris database by comparing and analysing the structural similarity index matrix, peak signal-to-noise ratio, visual information fidelity in pixel domain, and execution time of proposed algorithms with Yang and Nguyen state-of-the-art algorithms. The results demonstrate that the proposed framework is well suited for super-resolution of iris images captured at a long distance.

References

    1. 1)
      • 28. Ahmed, Z., Hussain, A., Jumeily, D.: ‘Fast computations of full search block matching motion estimation’. Proc. of PGNeT Conf., 2011.
    2. 2)
      • 31. Jia, H., Zhang, L.: ‘A new cross diamond search algorithm for block motion estimation’. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, 2004, vol. 3, pp. 357362.
    3. 3)
      • 38. Shao-Sheng, D.: ‘Adaptive regularization of infrared image super-resolution reconstruction’. IEEE Int. Conf. on Computing, Communication and Networking Technologies, 2014.
    4. 4)
      • 2. Matey, J., Naroditsky, O., Hanna, K.: ‘Iris on the move: acquisition of images for iris recognition in less constrained environments’, IEEE Proc. Image Process., 2006, pp. 19361947.
    5. 5)
      • 36. Qian, Q.: ‘Image enhancement methods and applications in computational photography’ (Louisiana State University, Baton Rouge, U.S. state of Louisiana, 2014).
    6. 6)
      • 1. Venugopalan, S., Savvides, M.: ‘Unconstrained iris acquisition and recognition using COTS PTZ camera’, EURASIP J. Adv. Signal Process., 2010.
    7. 7)
      • 43. Lukes, T., Fliegel, K., Klima, M.: ‘Performance evaluation of image quality metrics with respect to their use for super-resolution enhancement’, Qualcomm Multimed. Exp., 2013, 51, pp. 01.
    8. 8)
      • 17. Huang, T.: ‘Learning based resolution enhancement of iris images’. British Machine Vision Conf., 2003.
    9. 9)
      • 12. Qiangqiang, Y., Liangpei, Z., Shen, H.: ‘Hyperspectral image denoising employing a spectral–spatial adaptive total variation model’, IEEE Trans. Geosci. Remote Sens., 2012, 50, pp. 36603677.
    10. 10)
      • 4. Subhasis, , C.: ‘Super-resolution imaging’ (Kluwer Academic Publishers, Springer, US, 2002), pp. 144.
    11. 11)
      • 22. Masek, L.: ‘Recognition of human iris patterns for biometric identification’, 2003.
    12. 12)
      • 41. Wang, Z., Bovik, A.: ‘Image quality assessment: from error visibility to structural similarity’, IEEE Proc. Image Process., 2004, 13, pp. 600612.
    13. 13)
      • 26. Chan, M., Yu, Y., Constantinides, A.: ‘Variable size block matching motion compensation with applications to video coding’, IEEE Proc. Commun. Speech Vis., 1990, 137, pp. 205212.
    14. 14)
      • 16. Shin, K.: ‘Super-resolution method based on multiple multi-layer perceptrons for iris recognition’. Fourth Int. Conf. on Ubiquitous Information Technologies Applications, 2009.
    15. 15)
      • 27. CCITT: ‘Codec for audiovisual services at n x 384 kbits/s’, Fascicle III.5, Rec. H.261, 1988.
    16. 16)
      • 42. Sheikh, H., Bovik, A., De Veciana, G.: ‘An information fidelity criterion for image quality assessment using natural scene statistics’, IEEE Trans. Image Process., 2005, 14, (12), pp. 21172128.
    17. 17)
      • 25. Wang, J.F., Zhang, Y., Yin, W.T.: ‘An efficient TVL1 algorithm for deblurring multi-channel images corrupted by impulsive noise’, SIAM J. Sci. Comput., 2009, 31, pp. 28422865.
    18. 18)
      • 5. Sung, P., Min, P., Moon, K., et al: ‘Super-resolution image reconstruction: a technical overview’, IEEE Signal Process. Mag., 2003, 20, pp. 2136.
    19. 19)
      • 45. ‘CASIA Iris Image Database. Available at http://www.biometrics.idealtest.org/.
    20. 20)
      • 44. Zhou, X., Bhanu, B.: ‘Evaluating the quality of super-resolved images for face recognition’. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition Workshops, 2008.
    21. 21)
      • 11. Qiangqiang, Y., Liangpei, Z., Shen, H.: ‘Multiframe super-resolution employing a spatially weighted total variation model’, IEEE Trans. Circuits Syst. Video Technol., 2012, 22, (3), pp. 379392.
    22. 22)
      • 47. Nguyen, K., Fookes, C., Sridharan, S., et al: ‘Feature-domain super-resolution for iris recognition’, Comput. Vis. Image Underst., 2013, 117, pp. 15261535.
    23. 23)
      • 24. Shan, Q., Jia, J., Agarwala, A.: ‘High-quality motion deblurring from a single image’, ACM Trans. Graph., 2008, 27, pp. 110.
    24. 24)
      • 21. Daugman, J.: ‘High confidence visual recognition of persons by a test of statistical independence’, IEEE Trans. Pattern Anal. Mach. Intell., 1993.
    25. 25)
      • 19. Park, U., Ross, A., Jain, A.K.: ‘Periocular biometrics in the visible spectrum’, IEEE Trans. Inf. Forensics Sec., 2011, 6, pp. 153158.
    26. 26)
      • 13. Wang, N., Tao, D., Gao, X.: ‘A comprehensive survey to face hallucination’, Int. J. Comput. Vis., 2014, 106, pp. 930.
    27. 27)
      • 35. Michael, K., Shen, H., Edmund, Y., et al: ‘A total variation regularization based super-resolution reconstruction algorithm for digital video’, EURASIP J. Adv. Signal Process., 2007, 7.
    28. 28)
      • 15. Zhang, K.: ‘Learning multiple linear mappings for efficient single image super-resolution’, IEEE Trans. Image Process., 2015, 24, pp. 846861.
    29. 29)
      • 32. Farsiu, S., Robinson, D., Elad, M., et al: ‘Advances and challenges in super-resolution’, Int. J. Imaging Syst. Technol., 2004, 14, pp. 4757.
    30. 30)
      • 34. Bioucas-Dias, J., Figueiredo, M., Oliveira, J.: ‘Total variation-based image deconvolution: a majorization minimization approach’. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, 2006, vol. 2, pp. 861864.
    31. 31)
      • 40. Hawlick, R.: ‘Statistical and structural approaches to texture’. IEEE Proc., 1979.
    32. 32)
      • 30. Zhu, S., Ma, M.: ‘A new diamond search algorithm for fast block-matching motion estimation’, IEEE Trans. Image Process., 2000, 9, pp. 287290.
    33. 33)
      • 33. Rudin, L., Osher, S., Fatemi, E.: ‘Nonlinear total variation based noise removal algorithms’. Proc. of the 11th Annual Int. Conf. of the Center for Nonlinear Studies on Experimental mathematics, 1992, pp. 259268.
    34. 34)
      • 9. Fahmy, G.: ‘Super-resolution construction of iris images from a visual low resolution face video’. Int. Symp. on Signal Processing and its Applications, 2007.
    35. 35)
      • 39. Haralick, R., Shanmugam, K., Dinstein, I.: ‘Textural features for image classification’, IEEE Trans. Syst. Man Cybern., 1973, 3, pp. 610621.
    36. 36)
      • 3. Nguyen, K., Sridharan, S., Fookes, C.: ‘Robust mean super-resolution for less cooperative NIR iris recognition at a distance and on the move’. Proc. of the Symp. on Information and Communication Technology, 2010, pp. 122127.
    37. 37)
      • 23. Cho, S., Lee, S.: ‘Fast motion deblurring’, ACM Trans. Graph., 2009, 28, pp. 2938.
    38. 38)
      • 20. Wildes, R.: ‘Iris recognition: an emerging biometric technology’. Proc. of the IEEE, 1997.
    39. 39)
      • 46. Yang, J.: ‘Coupled dictionary training for image super-resolution’, IEEE Trans. Image Process., 2012.
    40. 40)
      • 6. Thomas, K., Alexander, B., Katja, M.: ‘Multi-frame super-resolution with quality self-assessment for retinal fundus videos’, Med. Image Comput. Comput.-Assist. Interv., Lect. Notes Comput. Sci., 2014, 8673, pp. 650657.
    41. 41)
      • 7. Zhang, K., Gao, X., Tao, D., et al: ‘Single image super-resolution with non-local means and steering kernel regression’, IEEE Trans. Image Process., 2012, 21, pp. 45444556.
    42. 42)
      • 14. Zhang, K.: ‘Single image super-resolution with multi-scale similarity learning’, IEEE Trans. Neural Netw. Learn. Syst., 2013, 24, pp. 16481659.
    43. 43)
      • 37. Hu, H.: ‘An image super-resolution algorithm for different error levels per frame’, IEEE Trans. Image Process., 2006, 15, pp. 592603.
    44. 44)
      • 8. Gao, X., Wang, Q., Li, X., et al: ‘Zernike-moment-based image super-resolution’, IEEE Trans. Image Process., 2011.
    45. 45)
      • 10. Shen, H., Zhang, L., Bo, H., et al: ‘A MAP approach for joint motion estimation, segmentation, and super resolution’, IEEE Trans. Image Process., 2007, 16, pp. 479490.
    46. 46)
      • 18. Bradski, G.: ‘The OpenCV library’, Dr. Dobb's J. Software Tools, 2000.
    47. 47)
      • 29. Ahmadi, M., Azadfar, M.: ‘Implementation of fast motion estimation algorithms & comparison with full search method in H.264’, Int. J. Comput. Sci. Netw. Sec., 2008, 8, pp. 139143.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2016.0076
Loading

Related content

content/journals/10.1049/iet-bmt.2016.0076
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address