http://iet.metastore.ingenta.com
1887

Efficient multimodal ocular biometric system for person authentication based on iris texture and corneal shape

Efficient multimodal ocular biometric system for person authentication based on iris texture and corneal shape

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Ocular biometrics refers to the use of features of the eye for person recognition. For instance, the unique and stable texture of the iris has been recognised as a powerful ocular biometric characteristic. In this study, the authors propose to improve biometric authentication with a multimodal ocular biometric system based on the iris pattern and the three-dimensional shape of the cornea. They show how the cornea can be used as a biometric trait for person recognition and then, they propose an intra-ocular fusion with iris features to improve the overall performance of the system. Feature extraction was done by modelling the shape of the cornea with a Zernike polynomial expansion. Then the best linear combinations of Zernike coefficients were found with linear discriminant analysis and used as biometric identifier. The iris texture was analysed with a typical methodology using Gabor filtering and phase encoding. The fusion was performed at the matching score level using min, max, sum and weighted-sum rule. The experimental results on a new database constructed for this bi-modal study showed impressive performance of the proposed ocular biometric system with equal error rate decreasing to 0% with the weighted-sum rule.

References

    1. 1)
      • A.K. Jain , A.A. Ross , K. Nandakumar . (2011)
        1. Jain, A.K., Ross, A.A., Nandakumar, K.: ‘Introduction to biometrics’ (Springer Science+Business Media, LLC, 2011).
        .
    2. 2)
      • J. Daugman .
        2. Daugman, J.: ‘High confidence visual recognition of persons by a test of statistical independence’, IEEE Trans. Pattern Anal. Mach. Intell., 1993, 15, (11), pp. 11481161.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 11 , 1148 - 1161
    3. 3)
      • A. Kumar , T.S. Chan , C.W. Tan .
        3. Kumar, A., Chan, T.S., Tan, C.W.: ‘Human identification from at-a-distance face images using sparse representation of local iris features’. Proc. of Int. Conf. on Biometrics, New Delhi, India, March 2012, pp. 303309.
        . Proc. of Int. Conf. on Biometrics , 303 - 309
    4. 4)
      • W.W. Boles .
        4. Boles, W.W.: ‘A security system based on human iris identification using wavelet transform’, Eng. Appl. Artif. Intell., 1998, 11, (1), pp. 7785.
        . Eng. Appl. Artif. Intell. , 1 , 77 - 85
    5. 5)
      • L. Flom , A. Safir .
        5. Flom, L., Safir, A.: ‘Iris recognition system’. US Patent 4, 641, 349, 1987.
        .
    6. 6)
      • A. Ross , K. Nandakumar , A.K. Jain . (2006)
        6. Ross, A., Nandakumar, K., Jain, A.K.: ‘Handbook of multibiometrics’ (Springer-Verlag edition, 2006).
        .
    7. 7)
      • R. Raghavendra , B. Dorizzi , A. Rao .
        7. Raghavendra, R., Dorizzi, B., Rao, A., et al: ‘Designing efficient fusion schemes for multimodal biometric systems using face and palmprint’, Pattern Recognit.., 2011, 44, pp. 10761088.
        . Pattern Recognit.. , 1076 - 1088
    8. 8)
      • R. Raghavendra , B. Dorizzi , A. Rao .
        8. Raghavendra, R., Dorizzi, B., Rao, A., et al: ‘Novel image fusion scheme based on dependency measure for robust multispectral palmprint recognition’, Pattern Recognit.., 2014, 47, pp. 22052221.
        . Pattern Recognit.. , 2205 - 2221
    9. 9)
      • A. Polette , J.L. Mari , I. Brunette .
        9. Polette, A., Mari, J.L., Brunette, I., et al: ‘Comparison of quasi-spherical surfaces-application to corneal biometry’, IET Biometrics, 2016, 5, (3), pp. 18.
        . IET Biometrics , 3 , 1 - 8
    10. 10)
      • T. Buehren , M.J. Collins , D.R. Iskander .
        10. Buehren, T., Collins, M.J., Iskander, D.R., et al: ‘The stability of corneal topography in the post-blink interval’, Cornea, 2001, 20, (8), pp. 826833.
        . Cornea , 8 , 826 - 833
    11. 11)
      • M. Dubbelman , V.A.D.P. Sicam , G.L. Van der Heijde .
        11. Dubbelman, M., Sicam, V.A.D.P., Van der Heijde, G.L.: ‘The shape of the anterior and posterior surface of the aging human cornea’, Vis. Res., 2006, 46, (6–7), pp. 9931001.
        . Vis. Res. , 993 - 1001
    12. 12)
      • J. Daugman .
        12. Daugman, J.: ‘Probing the uniqueness and randomness of iris codes: results from 200 billion iris pair comparisons’, Proc. IEEE, 2006, 94, (11), pp. 19271935.
        . Proc. IEEE , 11 , 1927 - 1935
    13. 13)
      • R.P. Wildes .
        13. Wildes, R.P.: ‘Iris recognition: an emerging biometric technology’, Proc. IEEE, 1997, 85, (9), pp. 13481363.
        . Proc. IEEE , 9 , 1348 - 1363
    14. 14)
      • I. Nigam , M. Vatsa , R. Singh .
        14. Nigam, I., Vatsa, M., Singh, R.: ‘Ocular biometrics: a survey of modalities and fusion approaches’, Inf. Fusion, 2015, 26, pp. 135.
        . Inf. Fusion , 1 - 35
    15. 15)
      • V. Conti , C. Militello , F. Sorbello .
        15. Conti, V., Militello, C., Sorbello, F., et al: ‘A frequency-based approach for features fusion in fingerprint and iris multimodal biometric identification systems’, IEEE Trans. Syst. Man Cybern. C, Appl. Rev., 2010, 40, (4), pp. 384395.
        . IEEE Trans. Syst. Man Cybern. C, Appl. Rev. , 4 , 384 - 395
    16. 16)
      • Y. Wang , T. Tan , A.K. Jain .
        16. Wang, Y., Tan, T., Jain, A.K.: ‘Combining face and iris biometrics for identity verification’. Int. Conf. on AVBPA, Guildford, UK, June 2003, pp. 805813.
        . Int. Conf. on AVBPA , 805 - 813
    17. 17)
      • M. Eskandari , Ö. Toygar .
        17. Eskandari, M., Toygar, Ö.: ‘Fusion of face and iris biometrics using local and global feature extraction methods’, Signal Image Video Process., 2014, 8, (6), pp. 9951006.
        . Signal Image Video Process. , 6 , 995 - 1006
    18. 18)
      • M. Eskandari , Ö. Toygar .
        18. Eskandari, M., Toygar, Ö.: ‘Selection of optimized features and weights on face–iris fusion using distance images’, Comput. Vis. Image Underst., 2015, 137, pp. 6375.
        . Comput. Vis. Image Underst. , 63 - 75
    19. 19)
      • R. Gayathri , P. Ramamoorthy .
        19. Gayathri, R., Ramamoorthy, P.: ‘Feature level fusion of palmprint and iris’, Int. J. Comput. Sci. Issues, 2012, 9, (1), pp. 194203.
        . Int. J. Comput. Sci. Issues , 1 , 194 - 203
    20. 20)
      • V. Yano , A. Zimmer , L.L. Ling .
        20. Yano, V., Zimmer, A., Ling, L.L.: ‘Multimodal biometric authentication based on iris pattern and pupil light reflex’. Int. Conf. on Pattern Recognition, Tsukuba, Japan, November 2012, pp. 28572860.
        . Int. Conf. on Pattern Recognition , 2857 - 2860
    21. 21)
      • C.W. Tan , A. Kumar .
        21. Tan, C.W., Kumar, A.: ‘Human identification from at-a-distance images by simultaneously exploiting iris and periocular features’. Int. Conf. on Pattern Recognition, Tsukuba, Japan, November 2012, pp. 553556.
        . Int. Conf. on Pattern Recognition , 553 - 556
    22. 22)
      • M. Vatsa , R. Singh , A. Ross .
        22. Vatsa, M., Singh, R., Ross, A., et al: ‘Quality-based fusion for multichannel iris recognition’. Proc. of Int. Conf. on Pattern Recognition, Istanbul, Turkey, August 2010, pp. 13141317.
        . Proc. of Int. Conf. on Pattern Recognition , 1314 - 1317
    23. 23)
      • Z. Zhou , E.Y. Du , N.L. Thomas .
        23. Zhou, Z., Du, E.Y., Thomas, N.L., et al: ‘A comprehensive multimodal eye recognition’, Signal Image Video Process., 2013, 7, (4), pp. 619631.
        . Signal Image Video Process. , 4 , 619 - 631
    24. 24)
      • N.D. Lewis .
        24. Lewis, N.D.: ‘Corneal topography measurements for biometric applications’. PhD dissertation, The University of Arizona, 2011.
        . PhD dissertation
    25. 25)
      • N. Kihal , A. Pollete , S. Chitroub .
        25. Kihal, N., Pollete, A., Chitroub, S., et al: ‘Corneal topography: an emerging biometric system for person authentication’. Int. Conf. on Biometrics Special Interest Group (BIOSIG), Darmstadt, Germany, September 2015, pp. 18.
        . Int. Conf. on Biometrics Special Interest Group (BIOSIG) , 1 - 8
    26. 26)
      • N. Kihal , H. Bouazizi , A. Polette .
        26. Kihal, N., Bouazizi, H., Polette, A., et al: ‘Iris–cornea dataset’. Available at http://www-labs.iro.umontreal.ca/~labimage/IrisCorneaDataset/ be completed upon publication.
        .
    27. 27)
      • 27. National Eye Institute. Available at https://nei.nih.gov/sites/default/files/health-pdfs/factsaboutdryeye.pdf.
        .
    28. 28)
      • J. Raja Sekar , S. Arivazhagan , S. Shobana Priyadharshini .
        28. Raja Sekar, J., Arivazhagan, S., Shobana Priyadharshini, S., et al: ‘Iris recognition using combined statistical and co-occurrence multi-resolution features’, Int. J. Pattern Recognit. Artif. Intell., 2013, 27, (1), p. 19.
        . Int. J. Pattern Recognit. Artif. Intell. , 1 , 19
    29. 29)
      • F. Wang , J. Han .
        29. Wang, F., Han, J.: ‘Iris recognition method using log-Gabor filtering and feature fusion’, J. Xian Jiaotong Univ., 2007, 41, pp. 889893.
        . J. Xian Jiaotong Univ. , 889 - 893
    30. 30)
      • L. Masek .
        30. Masek, L.: ‘Recognition of human Iris patterns for biometric identification’. Master's thesis, The University of Western Australia, 2003.
        . Master's thesis
    31. 31)
      • J. Daugman .
        31. Daugman, J.: ‘How Iris recognition works’, IEEE Trans. Circuits Syst. Video Technol., 2004, 14, (1), pp. 2130.
        . IEEE Trans. Circuits Syst. Video Technol. , 1 , 21 - 30
    32. 32)
      • R.H. Webb .
        32. Webb, R.H.: ‘Zernike polynomial description of ophthalmic surfaces’, Ophthalmic Vis. Opt., 1992, 3, pp. 3841.
        . Ophthalmic Vis. Opt. , 38 - 41
    33. 33)
      • J. Schwiegerling , J.E. Greivenkamp , J.M. Miller .
        33. Schwiegerling, J., Greivenkamp, J.E., Miller, J.M.: ‘Representation of video-keratoscopic height data with Zernike polynomials’, J. Opt. Soc. Am., 1995, 12, (12), pp. 21052113.
        . J. Opt. Soc. Am. , 12 , 2105 - 2113
    34. 34)
      • A.R. Webb , K.D. Copsey . (2011)
        34. Webb, A.R., Copsey, K.D.: ‘Linear discriminant analysis, in statistical pattern recognition’ (John Wiley & Sons, Ltd, Chichester, UK, 2011, 3rd edn.).
        .
    35. 35)
      • A. Ross , A. Jain , J.Z. Qian .
        35. Ross, A., Jain, A., Qian, J.Z.: ‘Information fusion in biometrics’. Proc. of Int. Conf. on Audio and Video-Based Biometric Person Authentication, Halmstad, Sweden, June 2001, pp. 354359.
        . Proc. of Int. Conf. on Audio and Video-Based Biometric Person Authentication , 354 - 359
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2016.0067
Loading

Related content

content/journals/10.1049/iet-bmt.2016.0067
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address