Efficient multimodal ocular biometric system for person authentication based on iris texture and corneal shape

Efficient multimodal ocular biometric system for person authentication based on iris texture and corneal shape

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Ocular biometrics refers to the use of features of the eye for person recognition. For instance, the unique and stable texture of the iris has been recognised as a powerful ocular biometric characteristic. In this study, the authors propose to improve biometric authentication with a multimodal ocular biometric system based on the iris pattern and the three-dimensional shape of the cornea. They show how the cornea can be used as a biometric trait for person recognition and then, they propose an intra-ocular fusion with iris features to improve the overall performance of the system. Feature extraction was done by modelling the shape of the cornea with a Zernike polynomial expansion. Then the best linear combinations of Zernike coefficients were found with linear discriminant analysis and used as biometric identifier. The iris texture was analysed with a typical methodology using Gabor filtering and phase encoding. The fusion was performed at the matching score level using min, max, sum and weighted-sum rule. The experimental results on a new database constructed for this bi-modal study showed impressive performance of the proposed ocular biometric system with equal error rate decreasing to 0% with the weighted-sum rule.


    1. 1)
      • 1. Jain, A.K., Ross, A.A., Nandakumar, K.: ‘Introduction to biometrics’ (Springer Science+Business Media, LLC, 2011).
    2. 2)
      • 2. Daugman, J.: ‘High confidence visual recognition of persons by a test of statistical independence’, IEEE Trans. Pattern Anal. Mach. Intell., 1993, 15, (11), pp. 11481161.
    3. 3)
      • 3. Kumar, A., Chan, T.S., Tan, C.W.: ‘Human identification from at-a-distance face images using sparse representation of local iris features’. Proc. of Int. Conf. on Biometrics, New Delhi, India, March 2012, pp. 303309.
    4. 4)
      • 4. Boles, W.W.: ‘A security system based on human iris identification using wavelet transform’, Eng. Appl. Artif. Intell., 1998, 11, (1), pp. 7785.
    5. 5)
      • 5. Flom, L., Safir, A.: ‘Iris recognition system’. US Patent 4, 641, 349, 1987.
    6. 6)
      • 6. Ross, A., Nandakumar, K., Jain, A.K.: ‘Handbook of multibiometrics’ (Springer-Verlag edition, 2006).
    7. 7)
      • 7. Raghavendra, R., Dorizzi, B., Rao, A., et al: ‘Designing efficient fusion schemes for multimodal biometric systems using face and palmprint’, Pattern Recognit.., 2011, 44, pp. 10761088.
    8. 8)
      • 8. Raghavendra, R., Dorizzi, B., Rao, A., et al: ‘Novel image fusion scheme based on dependency measure for robust multispectral palmprint recognition’, Pattern Recognit.., 2014, 47, pp. 22052221.
    9. 9)
      • 9. Polette, A., Mari, J.L., Brunette, I., et al: ‘Comparison of quasi-spherical surfaces-application to corneal biometry’, IET Biometrics, 2016, 5, (3), pp. 18.
    10. 10)
      • 10. Buehren, T., Collins, M.J., Iskander, D.R., et al: ‘The stability of corneal topography in the post-blink interval’, Cornea, 2001, 20, (8), pp. 826833.
    11. 11)
      • 11. Dubbelman, M., Sicam, V.A.D.P., Van der Heijde, G.L.: ‘The shape of the anterior and posterior surface of the aging human cornea’, Vis. Res., 2006, 46, (6–7), pp. 9931001.
    12. 12)
      • 12. Daugman, J.: ‘Probing the uniqueness and randomness of iris codes: results from 200 billion iris pair comparisons’, Proc. IEEE, 2006, 94, (11), pp. 19271935.
    13. 13)
      • 13. Wildes, R.P.: ‘Iris recognition: an emerging biometric technology’, Proc. IEEE, 1997, 85, (9), pp. 13481363.
    14. 14)
      • 14. Nigam, I., Vatsa, M., Singh, R.: ‘Ocular biometrics: a survey of modalities and fusion approaches’, Inf. Fusion, 2015, 26, pp. 135.
    15. 15)
      • 15. Conti, V., Militello, C., Sorbello, F., et al: ‘A frequency-based approach for features fusion in fingerprint and iris multimodal biometric identification systems’, IEEE Trans. Syst. Man Cybern. C, Appl. Rev., 2010, 40, (4), pp. 384395.
    16. 16)
      • 16. Wang, Y., Tan, T., Jain, A.K.: ‘Combining face and iris biometrics for identity verification’. Int. Conf. on AVBPA, Guildford, UK, June 2003, pp. 805813.
    17. 17)
      • 17. Eskandari, M., Toygar, Ö.: ‘Fusion of face and iris biometrics using local and global feature extraction methods’, Signal Image Video Process., 2014, 8, (6), pp. 9951006.
    18. 18)
      • 18. Eskandari, M., Toygar, Ö.: ‘Selection of optimized features and weights on face–iris fusion using distance images’, Comput. Vis. Image Underst., 2015, 137, pp. 6375.
    19. 19)
      • 19. Gayathri, R., Ramamoorthy, P.: ‘Feature level fusion of palmprint and iris’, Int. J. Comput. Sci. Issues, 2012, 9, (1), pp. 194203.
    20. 20)
      • 20. Yano, V., Zimmer, A., Ling, L.L.: ‘Multimodal biometric authentication based on iris pattern and pupil light reflex’. Int. Conf. on Pattern Recognition, Tsukuba, Japan, November 2012, pp. 28572860.
    21. 21)
      • 21. Tan, C.W., Kumar, A.: ‘Human identification from at-a-distance images by simultaneously exploiting iris and periocular features’. Int. Conf. on Pattern Recognition, Tsukuba, Japan, November 2012, pp. 553556.
    22. 22)
      • 22. Vatsa, M., Singh, R., Ross, A., et al: ‘Quality-based fusion for multichannel iris recognition’. Proc. of Int. Conf. on Pattern Recognition, Istanbul, Turkey, August 2010, pp. 13141317.
    23. 23)
      • 23. Zhou, Z., Du, E.Y., Thomas, N.L., et al: ‘A comprehensive multimodal eye recognition’, Signal Image Video Process., 2013, 7, (4), pp. 619631.
    24. 24)
      • 24. Lewis, N.D.: ‘Corneal topography measurements for biometric applications’. PhD dissertation, The University of Arizona, 2011.
    25. 25)
      • 25. Kihal, N., Pollete, A., Chitroub, S., et al: ‘Corneal topography: an emerging biometric system for person authentication’. Int. Conf. on Biometrics Special Interest Group (BIOSIG), Darmstadt, Germany, September 2015, pp. 18.
    26. 26)
      • 26. Kihal, N., Bouazizi, H., Polette, A., et al: ‘Iris–cornea dataset’. Available at be completed upon publication.
    27. 27)
      • 27. National Eye Institute. Available at
    28. 28)
      • 28. Raja Sekar, J., Arivazhagan, S., Shobana Priyadharshini, S., et al: ‘Iris recognition using combined statistical and co-occurrence multi-resolution features’, Int. J. Pattern Recognit. Artif. Intell., 2013, 27, (1), p. 19.
    29. 29)
      • 29. Wang, F., Han, J.: ‘Iris recognition method using log-Gabor filtering and feature fusion’, J. Xian Jiaotong Univ., 2007, 41, pp. 889893.
    30. 30)
      • 30. Masek, L.: ‘Recognition of human Iris patterns for biometric identification’. Master's thesis, The University of Western Australia, 2003.
    31. 31)
      • 31. Daugman, J.: ‘How Iris recognition works’, IEEE Trans. Circuits Syst. Video Technol., 2004, 14, (1), pp. 2130.
    32. 32)
      • 32. Webb, R.H.: ‘Zernike polynomial description of ophthalmic surfaces’, Ophthalmic Vis. Opt., 1992, 3, pp. 3841.
    33. 33)
      • 33. Schwiegerling, J., Greivenkamp, J.E., Miller, J.M.: ‘Representation of video-keratoscopic height data with Zernike polynomials’, J. Opt. Soc. Am., 1995, 12, (12), pp. 21052113.
    34. 34)
      • 34. Webb, A.R., Copsey, K.D.: ‘Linear discriminant analysis, in statistical pattern recognition’ (John Wiley & Sons, Ltd, Chichester, UK, 2011, 3rd edn.).
    35. 35)
      • 35. Ross, A., Jain, A., Qian, J.Z.: ‘Information fusion in biometrics’. Proc. of Int. Conf. on Audio and Video-Based Biometric Person Authentication, Halmstad, Sweden, June 2001, pp. 354359.

Related content

This is a required field
Please enter a valid email address