access icon free Ocular surface vasculature recognition using curvelet transform

The vascular patterns seen on the white of the eye, mainly in conjunctival and episcleral layers, are termed as ocular surface vasculature (OSV). OSV is visible in images captured with commercial RGB cameras, and its unique texture can be used for biometric recognition. This study demonstrates the capabilities of curvelet transform for OSV feature extraction. Non-linear feature enhancement and feature mapping in curvelet domain are shown to be effective in differentiating OSV texture. Linear discriminant analysis and similarity metrics are used for matching. A match-score level fusion is used across multiple gaze directions for both eyes. Using a multi-distance dataset of 50 volunteers, where eye images were acquired from 30, 150, and 250 cm using a dSLR, a best equal error rate (EER) of 0.2% is obtained. Using a second dataset of 40 volunteers acquired from 150 cm using a dSLR, a best EER of 3.1% is obtained. For a 216-participant dataset of ocular images acquired using cellular phones from close proximity, an EER of 0.9% is obtained. The proposed methodology was also tested on the publicly available UBIRIS V1 dataset, yielding an EER of 0.7%. The experimental results support the theoretically formulated advantages of the curvelet transform and its capability in successful extraction of curved structures when applied to OSV patterns.

Inspec keywords: feature extraction; image enhancement; curvelet transforms; image texture; eye; image sensors; statistical analysis; vein recognition; image matching; image colour analysis; cellular radio; object recognition; image fusion

Other keywords: feature mapping; ocular surface vasculature recognition; biometric recognition; OSV recognition; nonlinear feature enhancement; conjunctival layers; EER; commercial RGB cameras; cellular phones; multiple gaze directions; multidistance dataset; linear discriminant analysis; close proximity; curvelet transform; dSLR; equal error rate; OSV feature extraction; similarity metrics; episcleral layers; match-score level fusion; OSV texture; vascular patterns; publicly available UBIRIS V1 dataset

Subjects: Integral transforms; Integral transforms; Image recognition; Other topics in statistics; Sensor fusion; Other topics in statistics; Computer vision and image processing techniques

References

    1. 1)
      • 14. Bracewell, R.N.: ‘The Fourier transform and IIS applications’. McGraw-Hill Series in Electrical Engineering, Networks and Systems, (New York: McGraw-Hill, c1986, 2nd rev. ed. 11986).
    2. 2)
      • 3. Farzin, H., Abrishami-Moghaddam, H., Moin, M.-S.: ‘A novel retinal identification system’, EURASIP J. Adv. Signal Process., 2008, 2008, p. 280635.
    3. 3)
      • 4. El-Sayed, M.A., Hassaballah, M., Abdel-Latif, M.A.: ‘Identity verification of individuals based on retinal features using Gabor filters and SVM’, J. Signal Inf. Process., 2016, 7, pp. 490.
    4. 4)
      • 26. Crihalmeanu, S., Ross, A., Derakhshani, R.: ‘Enhancement and registration schemes for matching conjunctival vasculature’, Int. Conf. on Biometrics. Springer Berlin Heidelberg, 2009.
    5. 5)
      • 29. Yi, S., Labate, D., Easley, G.R., et al: ‘A shearlet approach to edge analysis and detection’, IEEE Trans. Image Process., 2009, 18, pp. 929941.
    6. 6)
      • 11. Tankasala, S.P., Doynov, P., Derakhshani, R.R., et al: ‘Biometric recognition of conjunctival vasculature using GLCM features’. Int. Conf. on Image Information Processing (ICIIP), 2011, 2011, pp. 16.
    7. 7)
      • 27. Owen, C.G., Ellis, T.J., Rudnicka, A.R., et al: ‘Optimal green (red-free) digital imaging of conjunctival vasculature’, Ophthalmic Physiol. Opt., J. British College of Ophthalmic Opticians (Optometrists), 2002, 22, pp. 234243.
    8. 8)
      • 12. Saripalle, S.K., Gottemukkula, V., Tankasala, S.P., et al: ‘A method for using visible ocular vasculature for mobile biometrics’, IET Biometrics, 2016, 5, (1), pp. 312.
    9. 9)
      • 9. Derakhshani, R., Ross, A.: ‘A texture-based neural network classifier for biometric identification using ocular surface vasculature’. Int. Joint Conf. on Neural Networks, 2007, pp. 29822987.
    10. 10)
      • 44. Pertuz, S., Puig, D., Garcia, M.A.: ‘Analysis of focus measure operators for shape-from-focus’, Pattern Recognit., 2013, 46, pp. 14151432.
    11. 11)
      • 6. Robert ‘Buzz’ Hill: ‘Retina identification’. Biometrics, ed, 2002, pp. 123141.
    12. 12)
      • 18. Candès, E., Demanet, L., Donoho, D., et al: ‘Fast discrete curvelet transforms’, Multiscale Model. Simul., 2006, 5, pp. 861899.
    13. 13)
      • 7. Proenca, H., Alexandre, L.A.: ‘Toward noncooperative iris recognition: a classification approach using multiple signatures’, IEEE Trans. Pattern Anal. Mach. Intell., 2007, 29, pp. 607612.
    14. 14)
      • 35. Haralick, R.M., Shanmugam, K., Dinstein, I.: ‘Textural features for image classification’, IEEE Trans. Syst. Man Cybern., 1973, 3, pp. 610621.
    15. 15)
      • 15. Daubechies, I.: ‘Ten lectures on wavelets’ (Society for Industrial and Applied Mathematics, Philadelphia, Pa, 1992).
    16. 16)
      • 23. Oh, K., Toh, K.-A.: ‘Extracting sclera features for cancelable identity verification’. 2012 5th IAPR Int. Conf. on Biometrics (ICB), 2012, pp. 245250.
    17. 17)
      • 16. Candès, E.J., Donoho, D.L.: ‘Ridgelets: a key to higher-dimensional intermittency?’, Philos. Trans. R. Soc. Lond. A, Math. Phys. Eng. Sci., 1999, 357, pp. 24952509.
    18. 18)
      • 8. Derakhshani, R., Ross, A.: ‘Conjunctival scans for personal identification’. ed: Google Patents, 2008.
    19. 19)
      • 38. Daugman, J.: ‘How iris recognition works’. Int. Conf. on Image Processing, 2002, vol. 1, pp. I-33I-36.
    20. 20)
      • 22. Tankasala, S.P., Doynov, P.: ‘Multi scale multi directional shear operator for personal recognition using conjunctival vasculature’. Int. Symp. on Technologies for Homeland Security (HST), 2015, 2015, pp. 16.
    21. 21)
      • 28. Mallat, S., Hwang, W.L.: ‘Singularity detection and processing with wavelets’, IEEE Trans. Inf. Theory, 1992, 38, pp. 617643.
    22. 22)
      • 43. Das, A., Pal, U., Ballester, M.A.F., et al: ‘Fuzzy logic based selera recognition’. 2014 IEEE Int. Conf. on Fuzzy Systems (FUZZ-IEEE), 2014, pp. 561568.
    23. 23)
      • 21. Tankasala, S.P., Derakhshani, R., Crihalmeanu, S., et al: ‘A comparative analysis of wavelets for vascular similarity measurement’. IJCNN 2016, 2016.
    24. 24)
      • 10. Tankasala, S.P., Doynov, P., Derakhshani, R.: ‘Application of pyramidal directional filters for biometric identification using conjunctival vasculature patterns’. Int. Conf. on Technologies for Homeland Security (HST), 2013, 2013, pp. 639644.
    25. 25)
      • 30. Soares, J.V.B., Leandro, J.J.G., Cesar, R.M.Jr., et al: ‘Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification’, IEEE Trans. Med. Imaging, 2006, 25, pp. 12141222.
    26. 26)
      • 36. Hanley, J.A., McNeil, B.J.: ‘The meaning and use of the area under a receiver operating characteristic (ROC) curve’, Radiology, 1982, 143, pp. 2936.
    27. 27)
      • 20. Crihalmeanu, S., Ross, A.: ‘Multispectral scleral patterns for ocular biometric recognition’, Pattern Recognit. Lett., 2012, 33, pp. 18601869.
    28. 28)
      • 25. Oh, K., Oh, B.-S., Toh, K.-A., et al: ‘Combining sclera and periocular features for multi-modal identity verification’, Neurocomputing, 2014, 128, pp. 185198.
    29. 29)
      • 19. Derakhshani, R., Ross, A., Crihalmeanu, S.: ‘A new biometric modality based on conjunctival vasculature’ (Artificial Neural Networks in Engineering, St. Louis, USA, 2006), pp. 18.
    30. 30)
      • 39. Thomas, N.L., Du, E.Y., Zhou, Z.: ‘A new approach for sclera vein recognition’. SPIE Defense, Security, and Sensing, 2010, pp. 770805770805-10a.
    31. 31)
      • 32. Candès, E.J., Donoho, D.L.: ‘Curvelets and curvilinear integrals’, J. Approx. Theory, 2001, 113, pp. 5990.
    32. 32)
      • 1. Nigam, I., Vatsa, M., Singh, R.: ‘Ocular biometrics: a survey of modalities and fusion approaches’, Inf. Fusion, 2015, 26, pp. 135.
    33. 33)
      • 40. Tankasala, S.P., Doynov, P., Derakhshani, R.: ‘Visible spectrum, bi-modal ocular biometrics’, Proc. Technol., 2012, 6, pp. 564573.
    34. 34)
      • 31. Zhang, J., Wang, Y., Zhang, Z., et al: ‘Comparison of wavelet, Gabor and curvelet transform for face recognition’, Opt. Appl., 2011, 41, pp. 183193.
    35. 35)
      • 41. Das, A., Pal, U., Ballester, M.A.F., et al: ‘Sclera recognition using dense-SIFT’. 2013 13th Int. Conf. on Intelligent Systems Design and Applications, 2013, pp. 7479.
    36. 36)
      • 42. Lin, Y., Du, E.Y., Zhou, Z., et al: ‘An efficient parallel approach for sclera vein recognition’, IEEE Trans. Inf. Forensics Sec., 2014, 9, pp. 147157.
    37. 37)
      • 33. Zhang, B., Zhang, Y., Lu, W., et al: ‘Phenotype recognition by curvelet transform and random subspace ensemble’, J. Appl. Math. Bioinform., 2011, 1, p. 79.
    38. 38)
      • 13. Stein, E.M., Murphy, T.S.: ‘Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals’ (Princeton University Press, 1993), vol. 3.
    39. 39)
      • 5. Gottemukkula, V., Saripalle, S., Derakshani, R., et al: ‘A texture-based method for identification of retinal vasculature’. Int. Conf. on Technologies for Homeland Security (HST), 2011, 2011, pp. 434439.
    40. 40)
      • 37. Proença, H., Alexandre, L.A.: ‘UBIRIS: a noisy iris image database’. Int. Conf. on Image Analysis and Processing, 2005, pp. 970977.
    41. 41)
      • 2. http://www.biometricupdate.com/201307/explainer-retinal-scan-technology.
    42. 42)
      • 17. Starck, J.-L., Candès, E.J., Donoho, D.L.: ‘The curvelet transform for image denoising’, IEEE Trans. Image Process., 2002, 11, pp. 670684.
    43. 43)
      • 24. Zhou, Z., Du, E.Y., Thomas, N.L., et al: ‘A new human identification method: sclera recognition’, IEEE Trans. Syst. Man Cybern. A, Syst. Humans, 2012, 42, pp. 571583.
    44. 44)
      • 34. Patil, A.A., Singhai, J.: ‘Image denoising using curvelet transform: an approach for edge preservation’, J. Sci. Ind. Res., 2010, 69, (1), pp. 3438.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2015.0091
Loading

Related content

content/journals/10.1049/iet-bmt.2015.0091
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading