http://iet.metastore.ingenta.com
1887

Human gait recognition from motion capture data in signature poses

Human gait recognition from motion capture data in signature poses

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Most contribution to the field of structure-based human gait recognition has been done through design of extraordinary gait features. Many research groups that address this topic introduce a unique combination of gait features, select a couple of well-known object classifiers, and test some variations of their methods on their custom Kinect databases. For a practical system, it is not necessary to invent an ideal gait feature – there have been many good geometric features designed – but to smartly process the data there are at the authors’ disposal. This work proposes a gait recognition method without design of novel gait features; instead, the authors suggest an effective and highly efficient way of processing known types of features. Their method extracts a couple of joint angles from two signature poses within a gait cycle to form a gait pattern descriptor, and classifies the query subject by the baseline 1-NN classifier. Not only are these poses distinctive enough, they also rarely accommodate motion irregularities that would result in confusion of identities. They experimentally demonstrate that their gait recognition method outperforms other relevant methods in terms of recognition rate and computational complexity. Evaluations were performed on an experimental database that precisely simulates street-level video surveillance environment.

References

    1. 1)
      • E. Auvinet , F. Multon , C.E. Aubin .
        1. Auvinet, E., Multon, F., Aubin, C.E., et al: ‘Detection of gait cycles in treadmill walking using a Kinect’, Gait Posture, 2015, 41, (2), pp. 722772.
        . Gait Posture , 2 , 722 - 772
    2. 2)
      • J. Valcik , J. Sedmidubsky , M. Balazia .
        2. Valcik, J., Sedmidubsky, J., Balazia, M., et al: ‘Identifying walk cycles for human recognition’. Proc. Pacific Asia Workshop on Intelligence and Security Informatics (PAISI), 2012, pp. 127135.
        . Proc. Pacific Asia Workshop on Intelligence and Security Informatics (PAISI) , 127 - 135
    3. 3)
      • W. Choensawat , W. Choi , K. Hachimura .
        3. Choensawat, W., Choi, W., Hachimura, K.: ‘Similarity retrieval of motion capture data based on derivative features’, Adv. Comput. Intell. Intell. Inf., 2012, 16, (1), pp. 1323.
        . Adv. Comput. Intell. Intell. Inf. , 1 , 13 - 23
    4. 4)
      • M.C. Hu , C.W. Chen , W.H. Cheng .
        4. Hu, M.C., Chen, C.W., Cheng, W.H., et al: ‘Real-time human movement retrieval and assessment with Kinect sensor’, IEEE Trans. Cybern., 2015, 45, (4), pp. 742753.
        . IEEE Trans. Cybern. , 4 , 742 - 753
    5. 5)
      • I. Kapsouras , N. Nikolaidis .
        5. Kapsouras, I., Nikolaidis, N.: ‘Action recognition in motion capture data using a bag of postures approach’. Int. Conf. Pattern Recognition (ICPR), 2014, pp. 26492654.
        . Int. Conf. Pattern Recognition (ICPR) , 2649 - 2654
    6. 6)
      • D. Leightley , B. Li , J.S. McPhee .
        6. Leightley, D., Li, B., McPhee, J.S., et al: ‘Exemplar-based human action recognition with template matching from a stream of motion capture’. Image Analysis and Recognition, 2014 (LNCS, 8815), pp. 1220.
        . Image Analysis and Recognition , 12 - 20
    7. 7)
      • S. Vantigodi , V.B. Radhakrishnan .
        7. Vantigodi, S., Radhakrishnan, V.B.: ‘Action recognition from motion capture data using meta-cognitive RBF network classifier’. IEEE Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), 2014, pp. 16.
        . IEEE Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP) , 1 - 6
    8. 8)
      • M. Ahmed , N. Al-Jawad , A. Sabir .
        8. Ahmed, M., Al-Jawad, N., Sabir, A.: ‘Gait recognition based on Kinect sensor’. Proc. SPIE, Real-Time Image and Video Processing, 2014, vol. 9139, pp. B:1B:10.
        . Proc. SPIE, Real-Time Image and Video Processing , B:1 - B:10
    9. 9)
      • V. Andersson , R. Dutra , R. Araujo .
        9. Andersson, V., Dutra, R., Araujo, R.: ‘Anthropometric and human gait identification using skeleton data from Kinect sensor’. Proc. ACM Symp. Applied Computing, 2014, pp. 6061.
        . Proc. ACM Symp. Applied Computing , 60 - 61
    10. 10)
      • A. Ball , D. Rye , F. Ramos .
        10. Ball, A., Rye, D., Ramos, F., et al: ‘Unsupervised clustering of people from ‘skeleton’ data’. Proc. ACM/IEEE Int. Conf. Human-Robot Interaction, 2012, pp. 225226.
        . Proc. ACM/IEEE Int. Conf. Human-Robot Interaction , 225 - 226
    11. 11)
      • M. Derlatka , M. Bogdan .
        11. Derlatka, M., Bogdan, M.: ‘Fusion of static and dynamic parameters at decision level in human gait recognition’. Pattern Recognition and Machine Intelligence, 2015 (LNCS, 9124), pp. 515524.
        . Pattern Recognition and Machine Intelligence , 515 - 524
    12. 12)
      • B. Dikovski , G. Madjarov , D. Gjorgjevikj .
        12. Dikovski, B., Madjarov, G., Gjorgjevikj, D.: ‘Evaluation of different feature sets for gait recognition using skeletal data from Kinect’. Information and Communication Technology, Electronics and Microelectronics, 2014, pp. 13041308.
        . Information and Communication Technology, Electronics and Microelectronics , 1304 - 1308
    13. 13)
      • F. Ahmed , P.P. Paul , M.L. Gavrilova .
        13. Ahmed, F., Paul, P.P., Gavrilova, M.L.: ‘DTW-based Kernel and rank-level fusion for 3D gait recognition using Kinect’, Visual Comput., 2015, 31, (6-8), pp. 915924.
        . Visual Comput. , 915 - 924
    14. 14)
      • S. Jiang , Y. Wang , Y. Zhang .
        14. Jiang, S., Wang, Y., Zhang, Y., et al: ‘Real time gait recognition system based on Kinect skeleton feature’. ACCV Workshops on Computer Vision, 2015 (LNCS, 9008), pp. 4657.
        . ACCV Workshops on Computer Vision , 46 - 57
    15. 15)
      • T. Krzeszowski , A. Switonski , B. Kwolek .
        15. Krzeszowski, T., Switonski, A., Kwolek, B., et al: ‘DTW-based gait recognition from recovered 3-D joint angles and inter-ankle distance’, Comput. Vis. Graph., 2014, 8671, pp. 356363.
        . Comput. Vis. Graph. , 356 - 363
    16. 16)
      • M.S.N. Kumar , R.V. Babu .
        16. Kumar, M.S.N., Babu, R.V.: ‘Human gait recognition using depth camera: a covariance based approach’. Computer Vision, Graphics and Image Processing (ICVGIP), 2012, pp. 20:120:6.
        . Computer Vision, Graphics and Image Processing (ICVGIP) , 20:1 - 20:6
    17. 17)
      • B. Kwolek , T. Krzeszowski , A. Michalczuk .
        17. Kwolek, B., Krzeszowski, T., Michalczuk, A., et al: ‘3D gait recognition using spatio-temporal motion descriptors’, Intell. Inf. Database Syst. (ACIIDS), 2014, 8398, pp. 595604.
        . Intell. Inf. Database Syst. (ACIIDS) , 595 - 604
    18. 18)
      • J. Preis , M. Kessel , M. Werner .
        18. Preis, J., Kessel, M., Werner, M., et al: ‘Gait recognition with Kinect’. Int. Workshop on Kinect in Pervasive Computing, 2012.
        . Int. Workshop on Kinect in Pervasive Computing
    19. 19)
      • J. Sedmidubsky , J. Valcik , M. Balazia .
        19. Sedmidubsky, J., Valcik, J., Balazia, M., et al: ‘Gait recognition based on normalized walk cycles’. Int. Symp. Visual Computing (ISVC), 2012, pp. 1120.
        . Int. Symp. Visual Computing (ISVC) , 11 - 20
    20. 20)
      • A. Sinha , K. Chakravarty , B. Bhowmick .
        20. Sinha, A., Chakravarty, K., Bhowmick, B.: ‘Person identification using skeleton information from Kinect’. Advances in Computer-Human Interactions, 2013, pp. 101108.
        . Advances in Computer-Human Interactions , 101 - 108
    21. 21)
      • K. Khoshelham .
        21. Khoshelham, K.: ‘Accuracy analysis of Kinect depth data’. ISPRS Workshop Laser Scanning, 2011, vol. 38.
        . ISPRS Workshop Laser Scanning
    22. 22)
      • M. Müller , A. Baak , H. Seidel .
        22. Müller, M., Baak, A., Seidel, H.: ‘Efficient and robust annotation of motion capture data’. ACM SIGGRAPH/Eurographics Symp. Computer Animation (SCA), 2009, pp. 1726.
        . ACM SIGGRAPH/Eurographics Symp. Computer Animation (SCA) , 17 - 26
    23. 23)
      • 23. Carnegie Mellon University: ‘Carnegie-Mellon Motion Capture (MoCap) Database’, http://mocap.cs.cmu.edu, 2003.
        .
    24. 24)
      • M. Hall , E. Frank , G. Holmes .
        24. Hall, M., Frank, E., Holmes, G., et al: ‘The WEKA data mining software: an update’, SIGKDD Explorations, 2009, 11, (1), pp. 1018.
        . SIGKDD Explorations , 1 , 10 - 18
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2015.0072
Loading

Related content

content/journals/10.1049/iet-bmt.2015.0072
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address