http://iet.metastore.ingenta.com
1887

access icon free Human gait recognition from motion capture data in signature poses

  • PDF
    4.808568000793457MB
  • HTML
    129.8955078125Kb
  • XML
    118.6591796875Kb
Loading full text...

Full text loading...

/deliver/fulltext/iet-bmt/6/2/IET-BMT.2015.0072.html;jsessionid=7wemisrp3oy9.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-bmt.2015.0072&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Auvinet, E., Multon, F., Aubin, C.E., et al: ‘Detection of gait cycles in treadmill walking using a Kinect’, Gait Posture, 2015, 41, (2), pp. 722772.
    2. 2)
      • 2. Valcik, J., Sedmidubsky, J., Balazia, M., et al: ‘Identifying walk cycles for human recognition’. Proc. Pacific Asia Workshop on Intelligence and Security Informatics (PAISI), 2012, pp. 127135.
    3. 3)
      • 3. Choensawat, W., Choi, W., Hachimura, K.: ‘Similarity retrieval of motion capture data based on derivative features’, Adv. Comput. Intell. Intell. Inf., 2012, 16, (1), pp. 1323.
    4. 4)
      • 4. Hu, M.C., Chen, C.W., Cheng, W.H., et al: ‘Real-time human movement retrieval and assessment with Kinect sensor’, IEEE Trans. Cybern., 2015, 45, (4), pp. 742753.
    5. 5)
      • 5. Kapsouras, I., Nikolaidis, N.: ‘Action recognition in motion capture data using a bag of postures approach’. Int. Conf. Pattern Recognition (ICPR), 2014, pp. 26492654.
    6. 6)
      • 6. Leightley, D., Li, B., McPhee, J.S., et al: ‘Exemplar-based human action recognition with template matching from a stream of motion capture’. Image Analysis and Recognition, 2014 (LNCS, 8815), pp. 1220.
    7. 7)
      • 7. Vantigodi, S., Radhakrishnan, V.B.: ‘Action recognition from motion capture data using meta-cognitive RBF network classifier’. IEEE Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), 2014, pp. 16.
    8. 8)
      • 8. Ahmed, M., Al-Jawad, N., Sabir, A.: ‘Gait recognition based on Kinect sensor’. Proc. SPIE, Real-Time Image and Video Processing, 2014, vol. 9139, pp. B:1B:10.
    9. 9)
      • 9. Andersson, V., Dutra, R., Araujo, R.: ‘Anthropometric and human gait identification using skeleton data from Kinect sensor’. Proc. ACM Symp. Applied Computing, 2014, pp. 6061.
    10. 10)
      • 10. Ball, A., Rye, D., Ramos, F., et al: ‘Unsupervised clustering of people from ‘skeleton’ data’. Proc. ACM/IEEE Int. Conf. Human-Robot Interaction, 2012, pp. 225226.
    11. 11)
      • 11. Derlatka, M., Bogdan, M.: ‘Fusion of static and dynamic parameters at decision level in human gait recognition’. Pattern Recognition and Machine Intelligence, 2015 (LNCS, 9124), pp. 515524.
    12. 12)
      • 12. Dikovski, B., Madjarov, G., Gjorgjevikj, D.: ‘Evaluation of different feature sets for gait recognition using skeletal data from Kinect’. Information and Communication Technology, Electronics and Microelectronics, 2014, pp. 13041308.
    13. 13)
      • 13. Ahmed, F., Paul, P.P., Gavrilova, M.L.: ‘DTW-based Kernel and rank-level fusion for 3D gait recognition using Kinect’, Visual Comput., 2015, 31, (6-8), pp. 915924.
    14. 14)
      • 14. Jiang, S., Wang, Y., Zhang, Y., et al: ‘Real time gait recognition system based on Kinect skeleton feature’. ACCV Workshops on Computer Vision, 2015 (LNCS, 9008), pp. 4657.
    15. 15)
      • 15. Krzeszowski, T., Switonski, A., Kwolek, B., et al: ‘DTW-based gait recognition from recovered 3-D joint angles and inter-ankle distance’, Comput. Vis. Graph., 2014, 8671, pp. 356363.
    16. 16)
      • 16. Kumar, M.S.N., Babu, R.V.: ‘Human gait recognition using depth camera: a covariance based approach’. Computer Vision, Graphics and Image Processing (ICVGIP), 2012, pp. 20:120:6.
    17. 17)
      • 17. Kwolek, B., Krzeszowski, T., Michalczuk, A., et al: ‘3D gait recognition using spatio-temporal motion descriptors’, Intell. Inf. Database Syst. (ACIIDS), 2014, 8398, pp. 595604.
    18. 18)
      • 18. Preis, J., Kessel, M., Werner, M., et al: ‘Gait recognition with Kinect’. Int. Workshop on Kinect in Pervasive Computing, 2012.
    19. 19)
      • 19. Sedmidubsky, J., Valcik, J., Balazia, M., et al: ‘Gait recognition based on normalized walk cycles’. Int. Symp. Visual Computing (ISVC), 2012, pp. 1120.
    20. 20)
      • 20. Sinha, A., Chakravarty, K., Bhowmick, B.: ‘Person identification using skeleton information from Kinect’. Advances in Computer-Human Interactions, 2013, pp. 101108.
    21. 21)
      • 21. Khoshelham, K.: ‘Accuracy analysis of Kinect depth data’. ISPRS Workshop Laser Scanning, 2011, vol. 38.
    22. 22)
      • 22. Müller, M., Baak, A., Seidel, H.: ‘Efficient and robust annotation of motion capture data’. ACM SIGGRAPH/Eurographics Symp. Computer Animation (SCA), 2009, pp. 1726.
    23. 23)
      • 23. Carnegie Mellon University: ‘Carnegie-Mellon Motion Capture (MoCap) Database’, http://mocap.cs.cmu.edu, 2003.
    24. 24)
      • 24. Hall, M., Frank, E., Holmes, G., et al: ‘The WEKA data mining software: an update’, SIGKDD Explorations, 2009, 11, (1), pp. 1018.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2015.0072
Loading

Related content

content/journals/10.1049/iet-bmt.2015.0072
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address