access icon free Effective statistical-based and dynamic fingerprint preprocessing technique

Challenges to contextual filtering techniques include difficulties in estimating orientation field in poor quality images and subsequently failure to extract ridges reliably in large regions of low quality. This study proposes a statistical-based and dynamic fingerprint preprocessing technique for adaptive contrast enhancement and binarisation of fair and poor qualities plain and rolled fingerprints with large regions of low quality, prior to orientation field estimation. The algorithm effectively enhances smudged and faded ridges uniformly in recoverable regions, based on values of statistical variables computed locally in each region. The preprocessing algorithm employs a locally adaptive thresholding approach resulting in enhanced binarised images. The performance of the proposed algorithm was determined by carrying out biometric verification evaluation using a popular commercial biometric matching software, on databases of fingerprints in their original forms, as well as same fingerprints enhanced with the proposed algorithm. Experiments show that fingerprints are uniformly enhanced and binarised; and smudged or faded ridges in recoverable regions made visible. Fingerprint verification evaluation on preprocessed fingerprints resulted in lower error rates in 12 databases. These results show that the proposed algorithm significantly improves recognition.

Inspec keywords: image matching; statistical analysis; fingerprint identification; image segmentation; image filtering; image enhancement

Other keywords: adaptive contrast enhancement; rolled fingerprints; faded ridges; recoverable regions; statistical variables; locally adaptive thresholding; dynamic fingerprint preprocessing technique; statistical-based fingerprint preprocessing technique; contextual filtering techniques; preprocessing algorithm; commercial biometric matching software; plain fingerprints; smudged ridges; enhanced binarised images; biometric verification evaluation; orientation field estimation

Subjects: Computer vision and image processing techniques; Other topics in statistics; Filtering methods in signal processing; Image recognition; Other topics in statistics

References

    1. 1)
      • 15. Tao, X., Yang, X., Cao, K., et al: ‘Estimation of fingerprint orientation field by weighted 2D Fourier expansion model’. 20th Int. Conf. on Pattern Recognition (ICPR), 2010, pp. 12531256.
    2. 2)
      • 35. Jucheng, Y., Naixue, X., Vasilakos, A.V.: ‘Two-stage enhancement scheme for low-quality fingerprint images by learning from the images’, IEEE Trans. Human-Mach. Syst., 2013, 43, pp. 235248.
    3. 3)
      • 28. Medeiros, L.X., Flores, E.L., Arantes Carrijo, G., et al: ‘Optimization of calculation of field orientation time and binarization of fingerprint images’, IEEE Latin Am. Trans. (Revista IEEE America Latina), 2011, 9, pp. 868874.
    4. 4)
      • 38. Griaule_Biometrics. Grfinger X 4.2. Available at http://www.griaulebiometrics.com/en-us.
    5. 5)
      • 10. Paulino, A.A., Feng, J., Jain, A.K.: ‘Latent fingerprint matching using descriptor-based hough transform’, IEEE Trans. Inf. Forensics Sec., 2013, 8, pp. 3145.
    6. 6)
      • 30. Cheng, J., Tian, J.: ‘Fingerprint enhancement with dyadic scale-space’, Pattern Recogn. Lett., 2004, 25, pp. 12731284.
    7. 7)
      • 29. Jun, L., Wu, H., Kangling, F., et al: ‘A wavelet-transform-based binarization algorithm on dynamic threshold of vertical orientation of fingerprint’. Proc. of the 2004 Int. Conf. on Intelligent Mechatronics and Automation, 2004, pp. 877880.
    8. 8)
      • 34. Gottschlich, C., Schoenlieb, C.B.: ‘Oriented diffusion filtering for enhancing low-quality fingerprint images’, IET Biometrics, 2012, 1, pp. 105113.
    9. 9)
      • 33. Gottschlich, C.: ‘Curved-region-based ridge frequency estimation and curved gabor filters for fingerprint image enhancement’, IEEE Trans. Image Process., 2012, 21, pp. 22202227.
    10. 10)
      • 36. Sherlock, B.G., Monro, D.M., Millard, K.: ‘Fingerprint enhancement by directional Fourier filtering’, IEE Proc. – Vis. Image Signal Process., 1994, 141, pp. 8794.
    11. 11)
      • 13. Gupta, P.: ‘Fingerprint orientation modeling using symmetric filters’. 2015 IEEE Winter Conf. on Applications of Computer Vision, 2015, pp. 663669.
    12. 12)
      • 14. Surya, A.A.K., Nugroho, A.S., Lim, C.: ‘Evaluation of fingerprint orientation field correction methods’. Int. Conf. on Advanced Computer Science and Information System (ICACSIS), 2011, pp. 353358.
    13. 13)
      • 3. Short, N.J., Abbott, A.L., Hsiao, M.S., et al: ‘Reducing descriptor measurement error through bayesian estimation of fingerprint minutia location and direction’, IET Biometrics, 2012, 1, pp. 8290.
    14. 14)
      • 4. Hong, L., Wan, Y., Jain, A.: ‘Fingerprint image enhancement: algorithm and performance evaluation’, IEEE Trans. Pattern Anal. Mach. Intell., 1998, 20, pp. 777789.
    15. 15)
      • 2. Jian-Liung, C., Cong-Hui, H., Yi-Chun, D., et al: ‘Combining fractional-order edge detection and chaos synchronisation classifier for fingerprint identification’, IET Image Process., 2014, 8, pp. 354362.
    16. 16)
      • 22. Guo, L., Chen, D.-H., Li, H., et al: ‘Characteristic preserving binarization for fingerprint image’. Fourth Int. Conf. on Image and Graphics, ICIG, 2007, pp. 401408.
    17. 17)
      • 26. Hailong, J., Kun, C.: ‘The research on the preprocessing algorithm for fingerprint image’. 2012 IEEE Symp. on Electrical and Electronics Engineering (EEESYM), 2012, pp. 163166.
    18. 18)
      • 25. Jing-Jing, G., Mei, X.: ‘The layered segmentation, gabor filtering and binarization based on orientation for fingerprint preprocessing’. 8th Int. Conf. on Signal Processing, 2006.
    19. 19)
      • 18. Sutthiwichaiporn, P., Areekul, V.: ‘Adaptive boosted spectral filtering for progressive fingerprint enhancement’, Pattern Recogn., 2013, 46, pp. 24652486.
    20. 20)
      • 5. Ratha, N.K., Chen, S., Jain, A.K.: ‘Adaptive flow orientation-based feature extraction in fingerprint images’, Pattern Recogn., 1995, 28, pp. 16571672.
    21. 21)
      • 19. Liang, X., Asano, T.: ‘A linear time algorithm for binary fingerprint image denoising using distance transform’, IEICE Trans. Inf. Syst., 2006, E89-D, pp. 110.
    22. 22)
      • 23. Bartunek, J.S., Nilsson, M., Nordberg, J., et al: ‘Adaptive fingerprint binarization by frequency domain analysis’. Fortieth Asilomar Conf. on Signals, Systems and Computers. ACSSC ’06, 2006, pp. 598602.
    23. 23)
      • 31. Ghafoor, M., Taj, I.A., Ahmad, W., et al: ‘Efficient 2-fold contextual filtering approach for fingerprint enhancement’, IET Image Process., 2014, 8, pp. 417425.
    24. 24)
      • 21. Munshi, P., Mitra, S.K.: ‘A rough-set based binarization technique for fingerprint images’. 2012 IEEE Int. Conf. on Signal Processing, Computing and Control (ISPCC), 2012, pp. 16.
    25. 25)
      • 41. Maio, D., Maltoni, D., Cappelli, R., et al: ‘FVC2000: fingerprint verification competition’, IEEE Trans. Pattern Anal. Mach. Intell., 2002, 24, pp. 402412.
    26. 26)
      • 24. Bartunek, J.S., Nilsson, M., Nordberg, J., et al: ‘Improved adaptive fingerprint binarization’. Congress on Image and Signal Processing, CISP ’08, 2008, pp. 756760.
    27. 27)
      • 1. Jing-Wein, W., Ngoc Tuyen, L., Chou-Chen, W., et al: ‘Enhanced ridge structure for improving fingerprint image quality based on a wavelet domain’, IEEE Signal Process. Lett., 2015, 22, pp. 390394.
    28. 28)
      • 20. Yuheng, Z., Qinghan, X.: ‘An optimized approach for fingerprint binarization’. Int. Joint Conf. on Neural Networks. IJCNN ’06, 2006, pp. 391395.
    29. 29)
      • 39. Neurotechnology. VeriFinger SDK 8.0. Available at http://www.neurotechnology.com/.
    30. 30)
      • 40. Jain, A.K., Cao, K.: ‘Fingerprint image analysis: role of orientation patch and ridge structure dictionaries’, in ‘Geometry driven statistics’ (John Wiley & Sons, Ltd, 2015), pp. 288310.
    31. 31)
      • 12. Liu, S., Liu, M.: ‘Fingerprint orientation modeling by sparse coding’. 2012 5th IAPR Int. Conf. on Biometrics (ICB), 2012, pp. 176181.
    32. 32)
      • 11. Nandakumar, K.: ‘Fingerprint matching based on minutiae phase spectrum’. 2012 5th IAPR Int. Conf. on Biometrics (ICB), 2012, pp. 216221.
    33. 33)
      • 37. Coetzee, L., Botha, E.C.: ‘Fingerprint recognition in low quality images’, Pattern Recogn., 1993, 26, pp. 14411460.
    34. 34)
      • 8. Chang, S., Cheng, Y., Larin, K.V., et al: ‘Optical coherence tomography used for security and fingerprint-sensing applications’, IET Image Process, 2008, 2, pp. 4858.
    35. 35)
      • 17. Chen, X.: ‘PDE-based regularization of orientation field for low-quality fingerprint images’. IEEE 11th Int. Conf. on Signal Processing (ICSP), 2012, pp. 10061011.
    36. 36)
      • 16. Gottschlich, C., Mihailescu, P., Munk, A.: ‘Robust orientation field estimation and extrapolation using semilocal line sensors’, IEEE Trans. Inf. Forensics Sec., 2009, 4, pp. 802811.
    37. 37)
      • 27. Kheiri, F., Samavi, S., Karimi, N.: ‘A new pipeline design for binarization and thinning of fingerprint images’. Canadian Conf. on Electrical and Computer Engineering, 2005, pp. 20132016.
    38. 38)
      • 32. Wang, W., Li, J., Huang, F., et al: ‘Design and implementation of Log-Gabor filter in fingerprint image enhancement’, Pattern Recogn. Lett., 2008, 29, pp. 301308.
    39. 39)
      • 7. Leung, K.C., Leung, C.H.: ‘Fingerprint retrieval by spatial modelling and distorted sample generation’, IET Comput. Vis., 2013, 7, pp. 425436.
    40. 40)
      • 6. Kai, C., Jain, A.K.: ‘Learning fingerprint reconstruction: from minutiae to image’, IEEE Trans. Inf. Forensics Sec., 2015, 10, pp. 104117.
    41. 41)
      • 9. Chen, F., Huang, X., Zhou, J.: ‘Hierarchical minutiae matching for fingerprint and palmprint identification’, IEEE Trans. Image Process., 2013, 22, pp. 49644971.
    42. 42)
      • 42. Maltoni, D., Maio, D., Jain, A., et al: ‘Handbook of fingerprint recognition’ (Springer-Verlag London Limited, 2009, 2nd edn.).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2015.0064
Loading

Related content

content/journals/10.1049/iet-bmt.2015.0064
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading