access icon free Generating cancellable fingerprint templates based on Delaunay triangle feature set construction

In this study, the authors propose a novel fingerprint template protection scheme that is developed using Delaunay triangulation net constructed from the fingerprint minutiae. The authors propose two methods namely FS_INCIR and FS_AVGLO to construct a feature set from the Delaunay triangles. The feature set computed is quantised and mapped to a 3D array to produce fixed length 1D bit string. This bit string is applied with a DFT to generate a complex vector. Finally, the complex vector is multiplied by user's key to generate a cancellable template. The proposed computation of feature set maintained a good balance between security and performance. These methods are tested on FVC 2002 and FVC 2004 databases and the experimental results show satisfactory performance. Further, the authors analysed the four requirements namely diversity, revocability, irreversibility and accuracy for protecting biometric templates. Thus, the feasibility of proposed scheme is depicted.

Inspec keywords: set theory; discrete Fourier transforms; mesh generation; fingerprint identification

Other keywords: Delaunay triangle feature set construction; FS_INCIR method; irreversibility; fingerprint minutiae; FS_AVGLO method; 3D array; security; cancellable fingerprint template generation; fingerprint template protection scheme; DFT; revocability; biometric template protection; complex vector generation; accuracy; 1D bit string; diversity

Subjects: Data security; Finite element analysis; Computational geometry; Integral transforms in numerical analysis

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
      • 22. Yang, W., Hu, J., Wang, S., et al: ‘Cancelable fingerprint templates with delaunay triangle-based local structures’. Proc. Cyberspace Safety and Security,(LNCS8300), 2013, Springer International Publishing, pp. 8191.
    5. 5)
    6. 6)
    7. 7)
      • 23. Fingerprint Verification Competetion: http://bias.csr.unibo.it/fvc2002’, accessed 30 January 2014.
    8. 8)
    9. 9)
    10. 10)
    11. 11)
      • 24. Neurotechnology VeriFinger SDK: ‘http://www.neurotechnology.com’, accessed 11 December 2013.
    12. 12)
      • 20. Fortune, S.: ‘Voronoi diagrams and Delaunay triangulations’, in Goodman, J.E., O'Rourke, J. (Eds.): ‘Handbook of discrete and computational geometry’ (CRC Press, Inc., Boca Raton, FL, USA, 1997), pp. 377388.
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
      • 18. Sandhya, M., Prasad, M.V.N.K.: ‘k-Nearest Neighborhood Structure (k-NNS) based alignment-free method for fingerprint template protection’. Int. Conf. on Biometrics (ICB), 2015, pp. 386393.
    23. 23)
      • 25. Uludag, U., Jain, A.K.: ‘Attacks on biometric systems: a case study in fingerprints’. Proc. SPIE, Security, Steganography, and Watermarking of Multimedia Contents, 2004, vol. 5306, pp. 622633.
    24. 24)
    25. 25)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2015.0034
Loading

Related content

content/journals/10.1049/iet-bmt.2015.0034
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading