Biometric template protection for speaker recognition based on universal background models

Biometric template protection for speaker recognition based on universal background models

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

(Voice-) biometric data is considered as personally identifiable information, that is, the increasing demand on (mobile) speaker recognition systems calls for applications which prevent from privacy threats, such as identity-theft or tracking without consent. Technologies of biometric template protection, in particular biometric cryptosystems, fulfil standardised properties of irreversibility and unlinkability which represent appropriate countermeasures to such vulnerabilities of conventional biometric recognition systems. Thereby, public confidence in and social acceptance of biometric applications is strengthened. In this work the authors propose a binarisation technique, which is used to extract scalable high-entropy binary voice reference data (templates) from speaker models, based on Gaussian mixture models and universal background models. Binary feature vectors are then protected within a template protection scheme in particular, fuzzy commitment scheme, in which error correction list-decoding is employed to overcome high intra-class variance of voice samples. In experiments, which are evaluated out on a text-independent speaker corpus of 339 individuals, it is demonstrated that the fully ISO/IEC IS 24745 compliant system achieves privacy protection at a negligible loss of biometric performance, confirming the soundness of the presented approach.


    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
      • 5. Inthavisas, K., Lopresti, D.: ‘Attacks on speech biometric authentication’. Proc. of Int. Conf. on Image Processing, Computer Vision, and Pattern Recognition (IPCV 2011), 2011, pp. 310316.
    6. 6)
    7. 7)
      • 7. Rathgeb, C., Uhl, A.: ‘A survey on biometric cryptosystems and cancelable biometrics’, EURASIP J. Inf. Secur., 2011, 2011, (3) pp. 125.
    8. 8)
      • 8. ISO/IEC JTC1 SC27 Security Techniques: ISO/IEC 24745:2011. Information Technology–Security Techniques–Biometric Information Protection, International Organization for Standardization, 2011.
    9. 9)
    10. 10)
    11. 11)
      • 11. Monrose, F., Reiter, M.K., Wetzel, S.: ‘Password hardening based on keystroke dynamics’. Proc. Sixth ACM Conf. on Computer and Communications Security, ACM, 1999, pp. 7382.
    12. 12)
      • 12. Monrose, F., Reiter, M.K., Li, Q., Wetzel, S.: ‘Cryptographic key generation from voice’. Proc. IEEE Symp. on Security and Privacy, IEEE, 2001, pp. 202213.
    13. 13)
      • 13. Monrose, F., Reiter, M.K., Li, Q., Wetzel, S.: ‘Using voice to generate cryptographic keys’. Proc. Speaker Odyssey 2001, The Speech Recognition Workshop, 2001, pp. 237242.
    14. 14)
    15. 15)
      • 15. Atah, J.A., Howells, G.: ‘Key generation in a voice based template free biometric security system’. Proc. of the 2009 Joint COST 2101 and 2102 Int. Conf. on Biometric ID Management and Multimodal Communication, Springer-Verlag, 2009, pp. 170177.
    16. 16)
    17. 17)
    18. 18)
      • 18. Rathgeb, C., Uhl, A.: ‘Two-factor authentication or how to potentially counterfeit experimental results in biometric systems’. Proc. of the Seventh Int. Conf. on Image Analysis and Recognition–Volume Part II, ser. ICIAR'10, Springer-Verlag, 2010, pp. 296305.
    19. 19)
      • 19. Adler, A.: ‘Vulnerabilities in biometric encryption systems’. Audio- and Video-Based Biometric Person Authentication, ser. LNCS, Springer, 2005, vol. 3546, pp. 11001109.
    20. 20)
      • 20. Inthavisas, K., Lopresti, D.: ‘Speech cryptographic key regeneration based on password’. Proc. 2011 Int. Joint Conf. on Biometrics, ser. IJCB'11, IEEE, 2011, pp. 17.
    21. 21)
    22. 22)
      • 22. Juels, A., Wattenberg, M.: ‘A fuzzy commitment scheme’. Proc. Sixth ACM Conf. on Computer and Communications Security, ACM, 1999, pp. 2836.
    23. 23)
      • 23. Johnson, R., Boult, T.: ‘With vaulted voice verification my voice is my key’. Int. Conf. on Technologies for Homeland Security (HST'13), November 2013, pp. 453459.
    24. 24)
      • 24. Juels, A., Sudan, M.: ‘A fuzzy vault scheme’. Proc. IEEE Int. Symp. on Information Theory, 2002, p. 408.
    25. 25)
      • 25. Johnson, R.C., Scheirer, W.J., Boult, T.E.: ‘Secure voice based authentication for mobile devices: Vaulted voice verification’, CoRR, 2012, abs/1212.0042.
    26. 26)
    27. 27)
      • 27. Pelecanos, J., Sridharan, S.: ‘Feature warping for robust speaker verification’.
    28. 28)
      • 28. You, C., Li, H., Ma, B., Lee, K.-A.: ‘Effect of relevance factor of maximum a posteriori adaptation for gmm-svm in speaker and language recognition’. Proc. of INTERSPEECH. ISCA, 2012.
    29. 29)
    30. 30)
    31. 31)
      • 31. Viveros, R., Balasubramanian, K., Balakrishnan, N.: ‘Binomial and negative binomial analogues under correlated bernoulli trials’, Am. Stat., 1984, 48, (3), pp. 243247.
    32. 32)
      • 32. Stoianov, A., Kevenaar, T., van der Veen, M.: ‘Security issues of biometric encryption’. 2009 IEEE Toronto Int. Conf. on Science and Technology for Humanity (TIC-STH), 2009, pp. 3439.
    33. 33)
    34. 34)
    35. 35)
      • 35. Rathgeb, C., Uhl, A.: ‘Adaptive fuzzy commitment scheme based on iris-code error analysis’. Second European Workshop on Visual Information Processing (EUVIP'10), 2010, pp. 4144.
    36. 36)
    37. 37)
      • 37. Simoens, K., Yang, B., Zhou, X., Beato, F., Busch, C., Newton, E., Preneel, B.: ‘Criteria towards metrics for benchmarking template protection algorithms’. Fifth IAPR Int. Conf. on Biometrics (ICB), 2012, pp. 498505.
    38. 38)
    39. 39)
    40. 40)
      • 40. ISO/IEC TC JTC1 SC37 Biometrics: ‘ISO/IEC 19795-1:2006. Information Technology – Biometric Performance Testing and Reporting – Part 1: Principles and Framework’. Int. Organization for Standardization and Int. Electrotechnical Committee, March 2006.

Related content

This is a required field
Please enter a valid email address