http://iet.metastore.ingenta.com
1887

Age-invariant face recognition system using combined shape and texture features

Age-invariant face recognition system using combined shape and texture features

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This work presents an approach for combining texture and shape feature sets towards age-invariant face recognition. Physiological studies have proven that the human visual system can recognise familiar faces at different ages from the face outline alone. Based on this scientific fact, the phase congruency features for shape analysis were adopted to produce a face edge map. This was beneficial in tracking the craniofacial growth pattern for each subject. Craniofacial growth is common during childhood years, but after the age of 18, the texture variations start to show as the effect of facial aging. Therefore, in order to handle such texture variations, a variance of the well-known local binary pattern (LBP) texture descriptor, known as LBP variance was adopted. The results showed that fusing the shape and the texture features set yielded better performance than the individual performance of each feature set. Moreover, the individual verification accuracy for each feature set was improved when they were transformed to a kernel discriminative common vectors presentation. The system achieved an overall verification accuracy of above 93% when it was evaluated over the FG-NET face aging database.

References

    1. 1)
      • R. Singh , M. Vatsa , A. Noore , S.K. Singh .
        1. Singh, R., , Vatsa, M., , Noore, A., , Singh, S.K.: ‘Age transformation for improving face recognition performancein ‘Pattern recognition and machine intelligence’ (Springer, Berlin, Heidelberg, 2007), pp. 576583.
        . , 576 - 583
    2. 2)
      • T. Wu , R. Chellappa .
        2. Wu, T., Chellappa, R.: ‘Age invariant face verification with relative craniofacial growth model’. Computer Vision ECCV 2012, 2012, (LNCS, 4815), pp. 576583.
        . Computer Vision ECCV 2012 , 576 - 583
    3. 3)
    4. 4)
    5. 5)
      • L.S. Mark , R.E. Shaw , J.B. Pittenger .
        5. Mark, L.S., Shaw, R.E., Pittenger, J.B.: ‘Natural constraints, scales of analysis, and information for the perception of growing faces’ in Alley, T.R., (Ed.); ‘Social and applied aspects of perceiving faces’, (Lawrence Embaum Associates, Mahwah, NJ, 1978).
        . Social and applied aspects of perceiving faces
    6. 6)
    7. 7)
      • M. Gayathri , K. Chandra .
        7. Gayathri, M., Chandra, K.: ‘Age invariant face recognition using graph matching’. Proc. 4th IEEE Int. Conf. on Biometrics: Theory Applications and Systems (BTAS), IEEE, 2010, pp. 17.
        . , 1 - 7
    8. 8)
    9. 9)
      • J. Wang , Y. Shang , G. Su , X. Lin .
        9. Wang, J., Shang, Y., Su, G., Lin, X.: ‘Age simulation for face recognition’. Proc. 18th Int. Conf. on Pattern Recognition, ICPR, 2006, Vol. 3, pp. 913-916.
        . Proc. 18th Int. Conf. on Pattern Recognition
    10. 10)
    11. 11)
    12. 12)
    13. 13)
      • F.S.D. Kit .
        13. Kit, F.S.D.: ‘Cognitec systems gmbh(http://www.cognitec-systems.de).
        .
    14. 14)
      • I. Craw , P. Cameron .
        14. Craw, I., Cameron, P.: ‘Face recognition by computer’. Proc. British Machine Vision Conf., London, UK, 1992, pp. 498507.
        . Proc. British Machine Vision Conf. , 498 - 507
    15. 15)
      • I. Craw , N. Costen , T. Kato , G. Robertson , S. Akamatsu .
        16. Craw, , I., Costen, , N., Kato, , T., Robertson, , G., Akamatsu, S.: ‘Automatic face recognition: Combining conguration and texture’. Proc. Int. Workshop on Automatic Face and Gesture Recognition, Zurich, Switzerland, 1995, pp. 53–58.
        .
    16. 16)
      • A. Lanitis , C.J. Taylor , T.F. Cootes .
        17. Lanitis, A., Taylor, , C.J., Cootes, T.F.: ‘A unified approach to coding and interpreting face images’. Proc. 5th Int. Conf. on Computer Vision, 1995pp. 368–373.
        . Proc. 5th Int. Conf. on Computer Vision
    17. 17)
    18. 18)
      • D. Beymer .
        19. Beymer, D.: ‘Vectorizing face images by interleaving shape and texture computations’. Technical report, Artificial Intelligence Laboratory, MIT, 1995.
        .
    19. 19)
      • S. Shojaeilangari , W.-Y. Yau , J. Li , E.-K. Teoh .
        20. Shojaeilangari, , S., Yau, , W.-Y., Li, , J., Teoh, , E.-K.: ‘Feature extraction through binary pattern of phase congruency for facial expression recognition’. Proc. IEEE 12th Int. Conf. on Control Automation Robotics and Vision, 2012, pp. 166170.
        . Proc. IEEE 12th Int. Conf. on Control Automation Robotics and Vision , 166 - 170
    20. 20)
      • M.G. Basavaraj , G.U. Reddy .
        21. Basavaraj, M.G., Reddy, G.U.: ‘An improved face recognition using neighbourhood defined modular phase congruency based kernel pca’, Int. J. Eng. Res. (IJERA), 2004, 2, pp. 528535.
        . Int. J. Eng. Res. (IJERA) , 528 - 535
    21. 21)
    22. 22)
      • C. Tang , W.J. Jiang Yanxia .
        23. Tang, C., Jiang Yanxia, W.J.: ‘Face recognition based on modular phase congruency’, Comput. Eng. Appl., 2012, 48, pp. 201204.
        . Comput. Eng. Appl. , 201 - 204
    23. 23)
    24. 24)
      • S. Dhanarajan , G. Michael .
        25. Dhanarajan, S., Michael, G.: ‘Modified approaches on face recognition by using multisensory image’, Int. J. Comput. Sci. Mob. Comput., 2013, 2, pp. 646649.
        . Int. J. Comput. Sci. Mob. Comput. , 646 - 649
    25. 25)
    26. 26)
    27. 27)
      • T. Maenpää , M. Pietikäinen .
        29. Maenpää, T., Pietikäinen, M.: ‘Multi-scale binary patterns for texture analysisin ‘Image analysis’, (Springer, Berlin, Heidelberg, 2003), pp. 885892.
        . , 885 - 892
    28. 28)
    29. 29)
    30. 30)
    31. 31)
      • M. Ghahramani , W.-Y. Yau , E.K. Teoh .
        33. Ghahramani, M., Yau, W.-Y., Teoh, E.K.: ‘Enhancing local binary patterns distinctiveness for face representation’. Proc. IEEE Int. Symp. on Multimedia (ISM), 2011, pp. 440445.
        . Proc. IEEE Int. Symp. on Multimedia (ISM) , 440 - 445
    32. 32)
    33. 33)
      • P. Kovesi .
        35. Kovesi, P.: ‘Invariant measures of feature detection’. PhD thesis, The University of Western Australia.
        . PhD thesis
    34. 34)
    35. 35)
    36. 36)
    37. 37)
      • P.D. Kovesi .
        39. Kovesi, P.D.: ‘A dimensionless measure of edge significance’, from phase congruency calculated via wavelets'. Proc. 1st New Zealand Conf. on Image and Vision Computing, 1993, pp. 8794.
        . , 87 - 94
    38. 38)
      • P. Kovesi .
        40. Kovesi, P.: ‘Phase congruency detects corners and edges’. The Australian Pattern Recognition Society Conf, DICTA, Sydney 2003, pp. 309318.
        . The Australian Pattern Recognition Society Conf , 309 - 318
    39. 39)
      • Berthold, H. . (1986)
        41. Berthold, H., : ‘Robot vision’ (MIT Press, Cambridge, MA, 1986).
        .
    40. 40)
    41. 41)
      • T. Ahonen , A. Hadid , M. Pietikäinen .
        44. Ahonen, T., Hadid, A., Pietikäinen, M.: ‘Face recognition with local binary patterns’. Proc. 8th European Conf. on Computer Vision, Prague, Czech Republic, 2014, pp. 469481.
        . Proc. 8th European Conf. on Computer Vision , 469 - 481
    42. 42)
    43. 43)
      • X. Lu , Y. Wang , A.K. Jain .
        46. Lu, X., Wang, Y., Jain, A.K.: ‘Combining classifiers for face recognition’. Proc. IEEE International Conference on Multimedia and Expo, 2003. Vol. 3, pp. III-13.
        .
    44. 44)
    45. 45)
    46. 46)
    47. 47)
    48. 48)
    49. 49)
    50. 50)
      • T.H. Chen , Horng , H. , Wu , K.-C. .
        53. Chen, T.H., Horng, , H., , Wu, , K.-C., : ‘A secure YS-like user authentication scheme’, Informatica, 2007, 18, (1), pp. 2736.
        . Informatica , 1 , 27 - 36
    51. 51)
    52. 52)
    53. 53)
      • F. Mihelic˘ , J. Z˘ibert . (2006)
        56. Mihelic˘, F., Z˘ibert, J.: ‘Robust speech detection based on phoneme recognition features’. Text, Speech and Dialogue, Lecture Notes on Computer Science, 2006, 4188, pp. 455462.
        .
    54. 54)
    55. 55)
      • D.M. Powers .
        58. Powers, D.M.: ‘Evaluation: from precision, recall and F-measure to ROC’, Inf. Markedness Correlation, 2011, 2, (1), pp. 3763.
        . Inf. Markedness Correlation , 1 , 37 - 63
    56. 56)
    57. 57)
      • R.J. Micheals , T.E. Boult .
        60. Micheals, R.J., Boult, T.E.: ‘Efficient evaluation of classification and recognition systems’. Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, 2001, Vol. 1, pp. I-50.
        .
    58. 58)
    59. 59)
      • B. Efron , G. Gong .
        62. Efron, B., Gong, G.: ‘A leisurely look at the bootstrap, the jackknife, and cross validation’, Am. Stat., 1983, 37, pp. 3648.
        . Am. Stat. , 36 - 48
    60. 60)
    61. 61)
    62. 62)
      • C. Liu .
        65. Liu, C.: ‘Gabor-based kernel pca with fractional power polynomial models for face recognition’, IEEE Trans. Pattern Anal. Mach. Intell., 2004, 26, pp. 234778.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 234 - 778
    63. 63)
      • C. Liu , H. Wechsler .
        66. Liu, C., Wechsler, H.: ‘Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition’, IEEE Trans. Pattern Anal. Mach. Intell., 2002, 11, pp. 467476.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 467 - 476
    64. 64)
    65. 65)
      • M. Gayathri , K. Chandra .
        68. Gayathri, M., Chandra, K.: ‘Age invariant face recognition using graph matching’. 2010 Fourth IEEE Int. Conf. on Biometrics: Theory Applications and Systems (BTAS), 2010, IEEE, pp. 1–7.
        . 2010 Fourth IEEE Int. Conf. on Biometrics: Theory Applications and Systems (BTAS)
    66. 66)
      • H. Ling , S. Soatto , N. Ramanathan , D.W. Jacobs , D. Jacobs .
        69. Ling, H., Soatto, S., Ramanathan, N., Jacobs, D.W., Jacobs, D.: ‘A study of face recognition as people age’, IEEE 11th Int. Conf. on Computer Vision, 2007, pp. 18.
        . IEEE 11th Int. Conf. on Computer Vision , 1 - 8
    67. 67)
      • B. Klare , A.K. Jain .
        70. Klare, B., Jain, A.K.: ‘Face recognition across time lapse: on learning feature subspaces’. Proc. IEEE Conf. on Biometrics (IJCB), Washington DC, 2011, pp. 18.
        . Proc. IEEE Conf. on Biometrics (IJCB) , 1 - 8
    68. 68)
      • P.J. Grother , G.W. Quinn , P.J. Phillips .
        71. Grother, P.J., Quinn, G.W., Phillips, P.J.: ‘Report on the evaluation of 2D still-image face recognition algorithms’. NIST Interagency Report 7709, 2010.
        .
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2014.0018
Loading

Related content

content/journals/10.1049/iet-bmt.2014.0018
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address