http://iet.metastore.ingenta.com
1887

Critical examination of the IREX VI results

Critical examination of the IREX VI results

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The authors analyse why Iris Exchange Report (IREX) VI conclusions about ‘iris ageing’ differ significantly from results of previous research on ‘iris template ageing’. They observe that IREX VI uses a definition of ‘iris ageing’ that is restricted to a subset of International Organization for Standardization (ISO)-definition template ageing. They also explain how IREX VI commits various methodological errors in obtaining what it calls its ‘best estimate of iris recognition ageing’. The OPS-XING dataset that IREX VI analyses for its ‘best estimate of iris recognition ageing’ contains no matches with Hamming distance >0.27. A ‘truncated regression’ technique should be used to analyse such a dataset, which IREX VI fails to do so, biasing its ‘best estimate’ to be lower-than-correct. IREX VI mixes Hamming distances from first, second and third attempts together in its regression, creating another source of bias towards a lower-than-correct value. In addition, the match scores in the OPS-XING dataset are generated from a ‘1-to-first’ matching strategy, meaning that they contain a small but unknown number of impostor matches, constituting another source of bias towards an artificially low value for ageing. Finally, IREX VI makes its ‘best estimate of iris recognition ageing’ by interpreting its regression model without taking into account the correlation among independent variables. This is another source of bias towards an artificially low value for ageing. Importantly, the IREX VI report does not acknowledge the existence of any of these sources of bias. They conclude with suggestions for a revised, improved IREX VI.

References

    1. 1)
      • P. Grother , J.R. Matey , E. Tabassi , G.W. Quinn , M. Chumakov .
        1. Grother, P., Matey, J.R., Tabassi, E., Quinn, G.W., Chumakov, M.: ‘IREX VI: temporal stability of iris recognition accuracy’. NIST Interagency Report, 7948, version dated 24 July 2013. Available at http://www.biometrics.nist.gov/cs_links/iris/irexVI/irex_report.pdf.
        .
    2. 2)
      • S. Baker , K.W. Bowyer , P.J. Flynn .
        2. Baker, S., Bowyer, K.W., Flynn, P.J.: ‘Empirical evidence for correct iris match score degradation with increased time-lapse between gallery and probe matches’. Int. Conf. on Biometrics, 2009, pp. 11701179.
        . Int. Conf. on Biometrics , 1170 - 1179
    3. 3)
      • N. Sazonova , F. Hua , X. Liu .
        3. Sazonova, N., Hua, F., Liu, X., et al: ‘A study on quality-adjusted impact of time lapse on iris recognition’. Proc. of SPIE #8371B: Biometric Technology for Human Identification, 23–27 April 2012.
        . Proc. of SPIE #8371B: Biometric Technology for Human Identification
    4. 4)
      • A. Czajka .
        4. Czajka, A.: ‘Influence of iris template ageing on recognition reliability’, Commun. Comput. Inf. Sci., 2014, 452, pp. 294299.
        . Commun. Comput. Inf. Sci. , 294 - 299
    5. 5)
      • P. Tome-Gonzalez , F. Alonso-Fernandez , J. Ortega-Garcia .
        5. Tome-Gonzalez, P., Alonso-Fernandez, F., Ortega-Garcia, J.: ‘On the effects of time variability in iris recognition’. Int. Conf. on Biometrics (ICB), 2008.
        . Int. Conf. on Biometrics (ICB)
    6. 6)
    7. 7)
      • S.P. Fenker , K.W. Bowyer .
        7. Fenker, S.P., Bowyer, K.W.: ‘Experimental evidence of a template aging effect in iris biometrics’. IEEE Computer Society Workshop on Applications of Computer Vision, 2011.
        . IEEE Computer Society Workshop on Applications of Computer Vision
    8. 8)
      • S.P. Fenker , K.W. Bowyer .
        8. Fenker, S.P., Bowyer, K.W.: ‘Analysis of template aging in iris biometrics’. IEEE Computer Society Workshop on Biometrics, 2012.
        . IEEE Computer Society Workshop on Biometrics
    9. 9)
      • E. Ellavarason , C. Rathgeb .
        9. Ellavarason, E., Rathgeb, C.: ‘Template ageing in iris biometrics: a cross-algorithm investigation of the ND-iris-template-ageing-2008–2010 database’. Technical Report, Nr. HDA-da/sec-2013-001, Hochschule Darmstadt, March 2013.
        .
    10. 10)
    11. 11)
      • 11. ISO/IEC 19795-1:2006: ‘Information technology – biometric performance testing and reporting – part 1: principles and framework’, Section 6.4.6.
        .
    12. 12)
    13. 13)
      • E. Ortiz , K.W. Bowyer , P.J. Flynn .
        13. Ortiz, E., Bowyer, K.W., Flynn, P.J.: ‘A linear regression analysis of the effects of age related pupil dilation change in iris biometrics’. Biometrics Theory, Applications and Sytems, Washington, DC, October 2013.
        . Biometrics Theory, Applications and Sytems
    14. 14)
      • B. Winn , D. Whitaker , D. Elliot , N. Phillips .
        14. Winn, B., Whitaker, D., Elliot, D., Phillips, N.: ‘Factors affecting light-adapted pupil size in normal human subjects’, Investigative Ophthalmol. Vis. Sci., 1994, 35, (3), pp. 11321137.
        . Investigative Ophthalmol. Vis. Sci. , 3 , 1132 - 1137
    15. 15)
      • M. Chumakov .
        15. Chumakov, M.: ‘Personal communication’.
        .
    16. 16)
    17. 17)
      • 17. Independent Testing of Iris Recogntion Technology (ITIRT), Final Report, International Biometric Group, May 2005.
        .
    18. 18)
      • 18. Truncated Regression, UCLA Institute for Digital Research and Education. Available at http://www.ats.ucla.edu/stat/stata/dae/truncreg.htm.
        .
    19. 19)
      • R. Breen . (1996)
        19. Breen, R. (Ed.): ‘Regression models: censored, sample selected, or truncated data’. No. 111 (Sage, Thousand Oaks, CA, 1996).
        .
    20. 20)
      • T. Amemiya .
        20. Amemiya, T.: ‘Regression analysis when the dependent variable is truncated normal’, Econ., J. Econ. Soc., 1973, 41, pp. 9971016.
        . Econ., J. Econ. Soc. , 997 - 1016
    21. 21)
    22. 22)
    23. 23)
      • 23. LG IRIS, June 2014. Available at http://www.lgiris.com/ps/products/irisaccess4000.htm.
        .
    24. 24)
      • X. Liu , K.W. Bowyer , P. Flynn .
        24. Liu, X., Bowyer, K.W., Flynn, P.: ‘Experiments with an improved iris segmentation algorithm’. Fourth IEEE Workshop on Automatic Identification Technologies, October 2005, pp. 118123.
        . Fourth IEEE Workshop on Automatic Identification Technologies , 118 - 123
    25. 25)
      • N.R. Draper , H. Smith . (1998)
        25. Draper, N.R., Smith, H.: ‘Applied regression analysis’ (John Wiley & Sons, New York, NY, 1998, 3rd edn.).
        .
    26. 26)
      • S.G. Makridakis , S.C. Wheelwright , R.J. Hyndman . (1998)
        26. Makridakis, S.G., Wheelwright, S.C., Hyndman, R.J.: ‘Forecasting: methods and applications’ (Wiley, New York, NY, 1998).
        .
    27. 27)
      • 27. IrisGuard, June 2014. Available at http://www.irisguard.com/.
        .
    28. 28)
      • L. Flom , A. Safir .
        28. Flom, L., Safir, A.: ‘Iris recognition system’. US Patent 4641349, 1987.
        .
    29. 29)
      • M. Trokielewicz .
        29. Trokielewicz, M.: ‘Linear regression analysis of template aging in iris recognition’. Proc. IEEE 3rd Int. Workshop on Biometrics and Security, Gjøvik, Norway, 3–4 March 2015.
        . Proc. IEEE 3rd Int. Workshop on Biometrics and Security
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2014.0007
Loading

Related content

content/journals/10.1049/iet-bmt.2014.0007
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
Replies
The following responses have been recieved for this comment:
IREX VI: mixed-effects longitudinal models for iris ageing: response to Bowyer and Ortiz
This is a required field
Please enter a valid email address