Session variability modelling for face authentication

Session variability modelling for face authentication

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study examines session variability modelling for face authentication using Gaussian mixture models. Session variability modelling aims to explicitly model and suppress detrimental within-class (inter-session) variation. The authors examine two techniques to do this, inter-session variability modelling (ISV) and joint factor analysis (JFA), which were initially developed for speaker authentication. We present a self-contained description of these two techniques and demonstrate that they can be successfully applied to face authentication. In particular, they show that using ISV leads to significant error rate reductions of, on average, 26% on the challenging and publicly available databases SCface, BANCA, MOBIO and multi-PIE. Finally, the authors show that a limitation of both ISV and JFA for face authentication is that the session variability model captures and suppresses a significant portion of between-class variation.


    1. 1)
      • 1. Rúa, E., Castro, J., Mateo, C.: ‘Quality-based score normalization for audiovisual person authentication’. Image Analysis and Recognition, ser. (LNCS, 5112), 2008, pp. 10031012 (doi: 10.1007/978-3-540-69812-8_100).
    2. 2)
      • 2. Ahonen, T., Pietikäinen, M.: ‘Pixelwise local binary pattern models of faces using Kernel density estimation’. Advances in Biometrics, ser. (LNCS5558), 2009, pp. 5261 (doi: 10.1007/978-3-642-01793-3_6).
    3. 3)
      • 3. McCool, C., Marcel, S., Hadid, C., et al: ‘Bi-modal person recognition on a mobile phone: using mobile phone data’. IEEE International Conf. on Multimedia and Expo Workshop on Hot Topics in Mobile Multimedia, 2012.
    4. 4)
      • 4. Gross, R., Matthews, I., Cohn, J., Kanade, T., Baker, S.: ‘Multi-PIE’, Image Vis. Comput., 2010, 28, pp. 807813 (doi: 10.1016/j.imavis.2009.08.002).
    5. 5)
      • 5. Vogt, R., Sridharan, S.: ‘Explicit modelling of session variability for speaker verification’, Comput. Speech Language, 2008, 22, (1), pp. 1738 (doi: 10.1016/j.csl.2007.05.003).
    6. 6)
      • 6. Kenny, P., Boulianne, G., Ouellet, P., Dumouchel, P.: ‘Joint factor analysis versus eigenchannels in speaker recognition’, IEEE Trans. Audio Speech Language Process., 2007, 15, (4), pp. 14351447 (doi: 10.1109/TASL.2006.881693).
    7. 7)
      • 7. Reynolds, D.A., Quatieri, T.F., Dunn, R.B.: ‘Speaker verification using adapted Gaussian mixture models’, Digital Signal Process., 2000, 10, (1–3), pp. 1941 (doi: 10.1006/dspr.1999.0361).
    8. 8)
      • 8. Yang, J., Frangi, A., Yang, J., Zhang, D., Jin, Z.: ‘KPCA plus LDA: a complete kernel fisher discriminant framework for feature extraction and recognition’, IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27, (2), pp. 230244 (doi: 10.1109/TPAMI.2005.33).
    9. 9)
      • 9. Phillips, P., Beveridge, J., Draper, B., et al: ‘An introduction to the good, the bad, & the ugly face recognition challenge problem’. Proc. IEEE Int. Conf. Face Gesture, 2011, pp. 346353.
    10. 10)
      • 10. Günther, M., Wallace, R., Marcel, S.: ‘An open source framework for standardized comparisons of face recognition algorithms’. Proc. Second IEEE Int. Workshop on Benchmarking Facial Image Analysis Technologies, in conjunction with ECCV 2012, 2012, pp. 547556.
    11. 11)
      • 11. Sanderson, C., Paliwal, K.: ‘Fast features for face authentication under illumination direction changes’, Pattern Recogn. Lett., 2003, 24, pp. 24092419 (doi: 10.1016/S0167-8655(03)00070-9).
    12. 12)
      • 12. Lucey, S., Chen, T.: ‘A GMM parts based face representation for improved verification through relevance adaptation’. IEEE Computer Society Conf. Computer Vision and Pattern Recognition, 2004, vol. 2, pp. 855861.
    13. 13)
      • 13. Cardinaux, F., Sanderson, C., Bengio, S.: ‘User authentication via adapted statistical models of face images’, IEEE Trans. Signal Process., 2006, 54, (1), pp. 361373 (doi: 10.1109/TSP.2005.861075).
    14. 14)
      • 14. McCool, C., Marcel, S.: ‘Parts-based face verification using local frequency bands’. Proc. Third Int. Conf. Advances in Biometrics, 2009.
    15. 15)
      • 15. Sanderson, C., Lovell, B.C.: ‘Multi-region probabilistic histograms for robust and scalable identity inference’. Proc. Third Int. Conf. Advances in Biometrics, 2009.
    16. 16)
      • 16. Wallace, R., McLaren, M., McCool, C., Marcel, S.: ‘Inter-session variability modelling and joint factor analysis for face authentication’. Proc. Int. Joint Conf. Biometrics, 2011, pp. 18.
    17. 17)
      • 17. Cardinaux, F., Sanderson, C., Marcel, S.: ‘Comparison of MLP and GMM classifiers for face verification on XM2VTS’. Audio- and Video-Based Biometric Person Authentication, ser. (LNCS2688), 2003, pp. 10581059.
    18. 18)
      • 18. Tan, X., Triggs, B.: ‘Enhanced local texture feature sets for face recognition under difficult lighting conditions’, IEEE Trans. Image Process., 2010, 19, (6), pp. 16351650 (doi: 10.1109/TIP.2010.2042645).
    19. 19)
      • 19. Glembek, O., Burget, L., Dehak, N., Brummer, N., Kenny, P.: ‘Comparison of scoring methods used in speaker recognition with joint factor analysis’. Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing, April 2009, pp. 40574060.
    20. 20)
      • 20. Thyes, O., Kuhn, R., Nguyen, P., Junqua, J.: ‘Speaker identification and verification using eigenvoices’. Proc. Int. Conf. Spoken Language Processing, 2000, vol. 2, pp. 242245.
    21. 21)
      • 21. Kenny, P., Ouellet, P., Dehak, N., Gupta, V., Dumouchel, P.: ‘A study of inter-speaker variability in speaker verification’, IEEE Trans. Audio Speech Language Process., 2008, 16, pp. 980988 (doi: 10.1109/TASL.2008.925147).
    22. 22)
      • 22. Burget, L., Fapšo, M., Hubeika, V., et al: ‘BUT system description: NIST SRE 2008’. Proc. 2008 NIST Speaker Recognition Evaluation Workshop, 2008, pp. 14.
    23. 23)
      • 23. Phillips, P., Flynn, P., Scruggs, T., et al: ‘Overview of the face recognition grand challenge’. Proc. IEEE Computer Society Conf. Computer Vision and Pattern Recognition, 2005, vol. 1, pp. 947954.
    24. 24)
      • 24. Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: ‘Labeled faces in the wild: a database for studying face recognition in unconstrained environments’. University of Massachusetts, Amherst, Technical Report 07-49, 2007.
    25. 25)
      • 25. Bailly-Baillière, E., Bengio, S., Bimbot, F., et al.: ‘The BANCA database and evaluation protocol’. Audio- and Video-Based Biometric Person Authentication, ser. (LNCS2688), 2003, pp. 10571071.
    26. 26)
      • 26. Rodriguez, Y.: ‘Face detection and verification using local binary patterns’. PhD dissertation, Idiap Research Institute and École Polytechnique Fédérale de Lausanne, 2006.
    27. 27)
      • 27. Grgic, M., Delac, K., Grgic, S.: ‘SCface-surveillance cameras face database’, Multimedia Tools Appl., 2011, 51, pp. 863879 (doi: 10.1007/s11042-009-0417-2).
    28. 28)
      • 28. Anjos, A., El Shafey, L., Wallace, R., Günther, M., McCool, C., Marcel, S.: ‘Bob: a free signal processing and machine learning toolbox for researchers’. Proc. ACM Multimedia Conf., 2012.
    29. 29)
      • 29. Wallace, R., McLaren, M., McCool, C., Marcel, S.: ‘Cross-pollination of normalisation techniques from speaker to face authentication using Gaussian mixture models’, IEEE Trans. Inf. Forens. Security, 2012, 7, pp. 553562 (doi: 10.1109/TIFS.2012.2184095).
    30. 30)
      • 30. Dehak, N., Kenny, P., Dehak, R., Dumouchel, P., Ouellet, P.: ‘Front-end factor analysis for speaker verification’, IEEE Trans. Audio Speech Language Process., 2011, 19, pp. 788798 (doi: 10.1109/TASL.2010.2064307).

Related content

This is a required field
Please enter a valid email address