Oriented diffusion filtering for enhancing low-quality fingerprint images

Oriented diffusion filtering for enhancing low-quality fingerprint images

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

To enhance low-quality fingerprint images, we present a novel method that first estimates the local orientation of the fingerprint ridge and valley flow and next performs oriented diffusion filtering, followed by a locally adaptive contrast enhancement step. By applying the authors’ new approach to low-quality images of the FVC2004 fingerprint databases, the authors are able to show its competitiveness with other state-of-the-art enhancement methods for fingerprints like curved Gabor filtering. A major advantage of oriented diffusion filtering over those is its computational efficiency. Combining oriented diffusion filtering with curved Gabor filters led to additional improvements and, to the best of the authors’ knowledge, the lowest equal error rates achieved so far using MINDTCT and BOZORTH3 on the FVC2004 databases. The recognition performance and the computational efficiency of the method suggest to include oriented diffusion filtering as a standard image enhancement add-on module for real-time fingerprint recognition systems. In order to facilitate the reproduction of these results, an implementation of the oriented diffusion filtering for Matlab and GNU Octave is made available for download.


    1. 1)
    2. 2)
      • D. Maltoni , D. Maio , A.K. Jain , S. Prabhakar . (2003) Handbook of fingerprint recognition.
    3. 3)
      • Maio, D., Maltoni, D., Capelli, R., Wayman, J.L., Jain, A.K.: `FVC2004: third fingerprint verification competition', Proc. Int. Conf. on Biometric Authentication (ICBA), 2004, Hong Kong, p. 1–7.
    4. 4)
      • Garris, M.D., McCabe, R.M.: `Nist special database 27: fingerprint minutiae from latent and matching tenprint images', Tech. Rep. 6534, 2000.
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
      • J. Bigun . (2005) Vision with direction.
    15. 15)
      • Meihua, X., Zhengming, W.: `Fingerprint enhancement based on edge-directed diffusion', Proc. Third Int. Conf. on Image and Graphics, December 2004, p. 274–277.
    16. 16)
      • Zhai, X., Wang, Y., Shi, Z., Zheng, X.: `An integration of topographic scheme and nonlinear diffusion filtering scheme for fingerprint binarization', Proc. ICIC, 2006, p. 702–708.
    17. 17)
      • Hao, Y., Yuan, C.: `Fingerprint image enhancement based on nonlinear anisotropic reverse-diffusion equations', Proc. Int. Conf. IEEE EMBS, September 2004, San Fransisco, CA, USA.
    18. 18)
      • Vallarino, G., Gianarelli, G., Barattini, J., Gomez, A., Fernandez, A., Pardo, A.: `Performance improvement in a fingerprint classification system using anisotropic diffusion', Proc. CIARP, 2004, p. 582–588.
    19. 19)
      • Hastings, R.: `Ridge enhancement in fingerprint images using oriented diffusion', Proc. Ninth Conf. on Digital Image Computation Technoloy and Application, December 2007, Glenelg, Australia, p. 245–252.
    20. 20)
    21. 21)
      • Chen, H., Dong, G.: `Fingerprint image enhancement by diffusion processes', Proc. Int. Conf. Image Processing, October 2006, Atlanta, GA, USA, p. 297–300.
    22. 22)
      • Zhao, Q., Zhang, L., Zhang, D., Huang, W., Bai, J.: `Curvature and singularity driven diffusion for oriented pattern enhancement with singular points', Proc. Conf. on Computer Vision and Pattern Recognition (CVPR), June 2009, Miami, FL, USA, p. 2129–2135.
    23. 23)
      • J. Weickert . (1998) Anisotropic diffusion in image processing.
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
      • Maio, D., Maltoni, D., Capelli, R., Wayman, J.L., Jain, A.K.: `FVC2002: second fingerprint verification competition', Proc. 16th Int. Conf. on Pattern Recognition (ICPR), 2002, 3, p. 811–814.
    29. 29)
      • Gottschlich, C.: `Fingerprint growth prediction, image preprocessing and multi-level judgment aggregation', April 2010, PhD, University of Goettingen, Goettingen, Germany.
    30. 30)
    31. 31)
    32. 32)
      • K.-J. Engel , R. Nagel . (2000) One-parameter semigroups for linear evolution equations.
    33. 33)
      • O.A. Ladyzenskaja , V.A. Solonnikov , N.N. Uralceva . (1968) Linear and quasilinear equations of parabolic type.
    34. 34)
    35. 35)
      • Watson, C.I., Garris, M.D., Tabassi, E.: `User's guide to nist biometric image software (NBIS)', Technical Report, 2007.
    36. 36)
      • F. D'Almeida . (2004) Nonlinear diffusion toolbox.
    37. 37)
      • C. Wu , S. Tulyakov , V. Govindaraju . (2007) Robust point-based feature fingerprint segmentation algorithm, Advances in biometrics: ICB 2007.
    38. 38)
    39. 39)
      • Cappelli, R., Erol, A., Maio, D., Maltoni, D.: `Synthetic fingerprintimage generation', Proc. 15th Int. Conf. Pattern Recognition (ICPR), September 2000, Barcelona, Spain, p. 3–7.
    40. 40)
    41. 41)
    42. 42)
      • Harris, C., Stephens, M.: `A combined corner and edge detector', Proc. Alvey Vision Conf., 1988, p. 147–151.
    43. 43)
    44. 44)
    45. 45)

Related content

This is a required field
Please enter a valid email address