http://iet.metastore.ingenta.com
1887

Face spoofing detection from single images using texture and local shape analysis

Face spoofing detection from single images using texture and local shape analysis

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Current face biometric systems are vulnerable to spoofing attacks. A spoofing attack occurs when a person tries to masquerade as someone else by falsifying data and thereby gaining illegitimate access. Inspired by image quality assessment, characterisation of printing artefacts and differences in light reflection, the authors propose to approach the problem of spoofing detection from texture analysis point of view. Indeed, face prints usually contain printing quality defects that can be well detected using texture and local shape features. Hence, the authors present a novel approach based on analysing facial image for detecting whether there is a live person in front of the camera or a face print. The proposed approach analyses the texture and gradient structures of the facial images using a set of low-level feature descriptors, fast linear classification scheme and score level fusion. Compared to many previous works, the authors proposed approach is robust and does not require user-cooperation. In addition, the texture features that are used for spoofing detection can also be used for face recognition. This provides a unique feature space for coupling spoofing detection and face recognition. Extensive experimental analysis on three publicly available databases showed excellent results compared to existing works.

References

    1. 1)
      • Handbook of face recognition
    2. 2)
      • Chakka, M.M., Anjos, A., Marcel, S.: `Competition on counter measures to 2-d facial spoofing attacks', Proc. IAPR IEEE Int. Joint Conf. on Biometrics (IJCB), 2011, Washington, DC, USA
    3. 3)
      • Liveness detection for face recognition
    4. 4)
      • Tan, X., Li, Y., Liu, J., Jiang, L.: `Face liveness detection from a single image with sparse low rank bilinear discriminative model', Proc. 11th European Conf. on Computer vision: Part VI. ECCV'10, 2010, p. 504–517,, available at http://portal.acm.org/citation.cfm?id=1888212.1888251
    5. 5)
      • Peixoto, B., Michelassi, C., Rocha, A.: `Face liveness detection under bad illumination conditions', IEE Int. Conf. on Image Processing, 2011
    6. 6)
      • Anjos, A., Marcel, S.: `Counter-measures to photo attacks in face recognition: a public database and a baseline', Proc. IAPR IEEE Int. Joint Conf. on Biometrics (IJCB), 2011, Washington, DC, USA
    7. 7)
      • Määttä, J., Hadid, A., Pietikäinen, M.: `Face spoofing detection from single images using micro-texture analysis', Proc. IAPR IEEE Int. Joint Conf. on Biometrics (IJCB), 2011, Washington, DC, USA
    8. 8)
    9. 9)
      • Dalal, N., Triggs, B.: `Histograms of oriented gradients for human detection', Int. Conf. on Computer Vision & Pattern Recognition, 2005, 3, p. 886–893
    10. 10)
      • Vedaldi, A., Zisserman, A.: `Efficient additive kernels via explicit feature maps', Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 2010
    11. 11)
      • Statistical learning theory
    12. 12)
      • Spoof detection schemes
    13. 13)
    14. 14)
      • Bao, W., Li, H., Li, N., Jiang, W.: `A liveness detection method for face recognition based on optical flow field', IEEE 2009 Int. Conf. on Image Analysis and Signal Processing, 2009, p. 233–236
    15. 15)
      • Live face detection based on the analysis of Fourier spectra
    16. 16)
      • Zhang, Z., Yi, D., Lei, Z., Li, S.Z.: `Face liveness detection by learning multispectral reflectance distributions', Int. Conf. on Face and Gesture, 2011, p. 436–441
    17. 17)
      • Pavlidis, I., Symosek, P.: `The Imaging Issue in an automatic face/disguise detection system', Proc. IEEE Workshop on Computer Vision Beyond the Visible Spectrum: Methods and Applications (CVBVS 2000), 2000, p. 15,, available at http://dl.acm.org/citation.cfm?id=518905.795366
    18. 18)
      • Sun, L., Huang, W., Wu, M.: `TIR/VIS correlation for liveness detection in face recognition', Proc. 14th Int. Conf. on Computer Analysis of Images and Patterns – Volume Part II. CAIP'11, 2011, p. 114–121, available at http://dl.acm.org/citation.cfm?id=2044575.2044590
    19. 19)
      • Bai, J., Ng, T.T., Gao, X., Shi, Y.Q.: `Is physics-based liveness detection truly possible with a single image?', IEEE Int. Symp. on Circuits and Systems (ISCAS), 2010, p. 3425–3428
    20. 20)
      • Gao, X., Ng, T.T., Qiu, B., Chang, S.F.: `Single-view recaptured image detection based on physics-based features', IEEE Int. Conf. on Multimedia & Expo (ICME), 2010, p. 1469–1474
    21. 21)
    22. 22)
    23. 23)
      • LIBLINEAR: a library for large linear classification
    24. 24)
      • VLFeat: an open and portable library of computer vision algorithms
    25. 25)
    26. 26)
    27. 27)
      • Viola, P.A., Jones, M.J.: `Rapid object detection using a boosted cascade of simple features', Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 2001, p. 511–518
    28. 28)
      • Niu, Z., Shan, S., Yan, S., Chen, X., Gao, W.: `2D cascaded adaboost for eye localization', Proc. 18th Int. Conf. on Pattern Recognition, 2006
    29. 29)
      • Wang, Y., Tan, T., Jain, A.K.: `Combining face and iris biometrics for identity verification', Proc. fourth Int. Conf. on Audio- and Video-Based Biometric Person Authentication. AVBPA'03, 2003, p. 805–813, available at http://dl.acm.org/citation.cfm?id=1762222.1762327
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2011.0009
Loading

Related content

content/journals/10.1049/iet-bmt.2011.0009
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address