http://iet.metastore.ingenta.com
1887

Ear biometrics: a survey of detection, feature extraction and recognition methods

Ear biometrics: a survey of detection, feature extraction and recognition methods

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The possibility of identifying people by the shape of their outer ear was first discovered by the French criminologist Bertillon, and refined by the American police officer Iannarelli, who proposed a first ear recognition system based on only seven features. The detailed structure of the ear is not only unique, but also permanent, as the appearance of the ear does not change over the course of a human life. Additionally, the acquisition of ear images does not necessarily require a person's cooperation but is nevertheless considered to be non-intrusive by most people. Owing to these qualities, the interest in ear recognition systems has grown significantly in recent years. In this survey, the authors categorise and summarise approaches to ear detection and recognition in 2D and 3D images. Then, they provide an outlook over possible future research in the field of ear recognition, in the context of smart surveillance and forensic image analysis, which they consider to be the most important application of ear recognition characteristic in the near future.

References

    1. 1)
      • Abaza, A., Ross, A.: `Towards understanding the symmetry of human ears: a biometric perspective', Fourth IEEE Int. Conf. on Biometrics: Theory Applications and Systems (BTAS), 2010
    2. 2)
      • La Photographie Judiciaire: Avec Un Appendice Sur La Classification Et L'Identification Anthropometriques
    3. 3)
      • Die Bedeutung der Ohrmuschel für die Feststellung der Identität
    4. 4)
      • Ear identification
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
      • Ibrahim, M.I.S., Nixon, M.S., Mahmoodi, S.: `The effect of time on ear biometrics', Int. Joint Conf. on Biometrics (IJCB), 2011, p. 1–6
    10. 10)
    11. 11)
    12. 12)
      • Biometric approaches of 2D–3D ear and face: a survey, Advances in computer and information sciences and engineering
    13. 13)
      • Choras, M.: `Image feature extraction methods for ear biometrics – a survey', Sixth Int. Conf. on Computer Information Systems and Industrial Management Applications, 2007, CISIM’07, 2007, p. 261–265
    14. 14)
      • Pun, K.H., Moon, Y.S.: `Recent advances in ear biometrics', Proc. Sixth IEEE Int. Conf. on Automatic Face and Gesture Recognition, 2004, 2004, p. 164–169
    15. 15)
      • Ear biometics
    16. 16)
      • Ramesh, K.P., Rao, K.N.: `Pattern extraction methods for ear biometrics – a survey', NaBIC 2009. World Congress on Nature Biologically Inspired Computing, 2009, 2009, p. 1657–1660
    17. 17)
      • Abaza A., Ross A., Herbert C., Harrison M.A.F., Nixon M.: ‘A survey on ear biometrics’, Commun. ACM, accepted, 2011, Available from: http://eprints.ecssoton.ac.uk/22951/
    18. 18)
    19. 19)
      • Faltemier, T.C., Bowyer, K.W., Flynn, P.J.: `Rotated profile signatures for robust 3D feature detection', Eighth IEEE Int. Conf. on Automatic Face and Gesture Recognition, 2008
    20. 20)
      • The west pomeranian university of technology ear database a tool for testing biometric algorithms, Image analysis and recognition
    21. 21)
    22. 22)
      • An efficient ear recognition technique invariant to illumination and pose
    23. 23)
    24. 24)
      • Al Nizami, H.A., Adkins-Hill, J.P., Zhang, Y.: `A biometric database with rotating head videos and hand- drawn face sketches', Proc. Third IEEE Int. Conf. on Biometrics: Theory, Applications and Systems, BTAS’09, 2009, p. 38–43., Available from: http://dl.acm.org/citation.cfm?id=1736406.1736412
    25. 25)
      • Raposo, R., Hoyle, E., Peixinho, A., Proenca, H.: `UBEAR: A dataset of ear images captured on-the-move in uncontrolled conditions', 2011 IEEE Workshop on Computational Intelligence in Biometrics and Identity Management (CIBIM), 2011, p. 84–90
    26. 26)
      • On shape-mediated enrolment in ear biometrics, Advances in visual computing
    27. 27)
      • Alistair, H., Cummings, A.H., Nixon, M.S., Carter, J.N.: `A novel ray analogy for enrolment of ear biometrics', Fourth IEEE Int. Conf. on Biometrics: Theory Applications and Systems (BTAS), 2010
    28. 28)
      • Model-based human ear localization and feature extraction
    29. 29)
    30. 30)
      • Chen, H., Bhanu, B.: `Contour matching for 3D ear recognition', Proc. Seventh IEEE Workshop on Applications of Computer Vision (WACV/MOTION), 2005
    31. 31)
      • Zhou, J., Cadavid, S., Abdel-Mottaleb, M.: `Histograms of categorized shapes for 3D ear detection', Fourth IEEE Int. Conf. on Biometrics: Theory Applications and Systems (BTAS), 2010
    32. 32)
      • Prakash, S., Gupta, P.: `An efficient technique for ear detection in 3D: invariant to rotation and scale', Fifth IAPR Int. Conf. on Biometrics (ICB), 2012
    33. 33)
      • Abaza, A., Hebert, C., Harrison, M.A.F.: `Fast learning ear detection for real-time surveillance', Fourth IEEE Int. Conf. on Biometrics: Theory Applications and Systems (BTAS 2010), 2010, p. 1–6
    34. 34)
      • Ansari, S., Gupta, P.: `Localization of ear using outer Helix curve of the ear', Int. Conf. on Computing: Theory and Applications (ICCTA), 2007, p. 688–692
    35. 35)
      • Alvarez, L., Gonzalez, E., Mazorra, L.: `Fitting ear contour using an ovoid model', 39thAnnual 2005 Int. Carnahan Conf. on Security Technology (CCST’05), 2005
    36. 36)
      • Arbab-Zavar, B., Nixon, M.: `Robust log-gabor filter for ear biometrics', Int. Conf. on Pattern Recognition (ICPR), 2008
    37. 37)
      • A new segmentation approach for ear recognition, Advanced concepts for intelligent vision systems
    38. 38)
      • Chen, H., Bhanu, B.: `Shape model-based 3D ear detection from side face range images', IEEE Computer Society Conf. on Computer Vision and Pattern Recognition – Workshops (CVPR), 2005, p. 122
    39. 39)
      • Islam, S.M.S., Bennamoun, M., Davies, R.: `Fast and fully automatic ear detection using cascaded AdaBoost', IEEE Workshop on Applications of Computer Vision, 2008, WACV 2008, 2008, p. 1–6
    40. 40)
      • Kumar, A., Hanmandlu, M., Kuldeep, M., Gupta, H.M.: `Automatic ear detection for online biometric applications', Third National Conf. on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG), 2011, p. 146–149
    41. 41)
      • Liu, H., Liu, D.: `Improving Adaboost ear detection with skin-color model and multitemplate matching', Third IEEE Int. Conf. on Computer Science and Information Technology (ICCSIT), 2010, 8, p. 106–109
    42. 42)
    43. 43)
      • Shih, H.C., Ho, C.C., Chang, H.T., Wu, C.S.: `Ear detection based on arc-masking extraction and AdaBoost polling verification', Fifth Int. Conf. on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), 2009, p. 669–672
    44. 44)
      • Yuan, L., Mu, Z.C.: `Ear detection based on skin-color and contour information', Int. Conf. on Machine Learning and Cybernetics, 2007, 4, p. 2213–2217
    45. 45)
    46. 46)
      • 13, Ear biometrics
    47. 47)
      • Yuan, L., Mu, Z.: `Ear recognition based on 2D images', First IEEE Int. Conf. on Biometrics: Theory, Applications, and Systems (BTAS), 2007, p. 1–5
    48. 48)
    49. 49)
      • Moreno, A.B., Sanchez, V.J.F.: `On the use of outer ear images for personal identification in security applications', IEEE 33rd Annual 1999 Int. Carnahan Conf. on Security Technology, 2002, p. 469–476
    50. 50)
      • Yuizono, T., Wang, Y., Satoh, K., Nakayama, S.: `Study on individual recognition for ear images by using genetic local search', Proc. 2002 Congress on Processing Scociety of Japan (IPSJ) Kyushu Chapter Symp., 2002, p. 237–242
    51. 51)
      • Victor, B., Bowyer, K., Sarkar, S.: `An evaluation of face and ear biometrics', Sixteenth Int. Conf. on Pattern Recognition (ICPR), 2002, 1, p. 429–432
    52. 52)
    53. 53)
      • Human ear recognition from face profile images, Advances in biometrics
    54. 54)
      • Shape and structural feature based ear recognition, Advances in biometric person authentication
    55. 55)
      • Abate, A.F., Nappi, M., Riccio, D., Ricciardi, S.: `Ear recognition by means of a rotation invariant descriptor', 18thInt. Conf. on Pattern Recognition, ICPR 2006, 2006, 4, p. 437–440
    56. 56)
      • Lu, L., Xiaoxun, Z., Youdong, Z., Yunde, J.: `Ear recognition based on statistical shape model', First Int. Conf. on Innovative Computing, Information and Control (ICICIC), 2006, p. 353–356
    57. 57)
      • Yuan, L., chun Mu, Z., Zhang, Y., Liu, K.: `Ear recognition using improved non-negative matrix factorization', 18thInt. Conf. on Pattern Recognition (ICPR), 2006, 4, p. 501–504
    58. 58)
      • Arbab-Zavar, B., Nixon, M.S., Hurley, D.J.: `On model-based analysis of ear biometrics', First IEEE Int. Conf. on Biometrics: Theory, Applications, and Systems, 2007 (BTAS 2007), 2007, p. 1–5
    59. 59)
      • Liu, H., Yan, J.: `Multi-view ear shape feature extraction and reconstruction', Third Int. IEEE Conf. on Signal-Image Technologies and Internet-Based System (SITIS), 2007, p. 652–658
    60. 60)
    61. 61)
      • Person identification using ear biometrics
    62. 62)
      • Ear biometrics: a new approach
    63. 63)
    64. 64)
      • Dong, J., Mu, Z.: `Multi-pose ear recognition based on force field transformation', Second Int. Symp. on Intelligent Information Technology Application (IITA), 2008, 3, p. 771–775
    65. 65)
      • Guo, Y., Xu, Z.: `Ear recognition using a new local matching approach', Fifteenth IEEE Int. Conf. on Image Processing (ICIP), 2008, p. 289–292
    66. 66)
      • Sparse representation for ear biometrics, Advances in visual computing
    67. 67)
      • Wang, Y., Chun Mu, Z., Zeng, H.: `Block-based and multi-resolition methods for ear recognition using Walelste transform and uniform local binary patterns', 19thInt. Conf. on Pattern Recognition (ICPR), 2008, p. 1–4
    68. 68)
      • Xie, Z., Mu, Z.: `Ear recognition using LLE and IDLLE algorithm', 19thInt. Conf. on Pattern Recognition (ICPR), 2008, p. 1–4
    69. 69)
      • Yaqubi, M., Faez, K., Motamed, S.: `Ear recognition using features inspired by visual cortex and support vector machine technique', Int. Conf. on Computer and Communication Engineering (ICCCE), 2008, p. 533–537
    70. 70)
      • Zhang, H., Mu, Z.: `Compound structure classifier system for ear recognition', IEEE Int. Conf. on Automation and Logistics (ICAL), 2008, p. 2306–2309
    71. 71)
      • Badrinath, G., Gupta, P.: `Feature level fused ear biometric system', Seventh Int. Conf. on Advances in Pattern Recognition (ICAPR), 2009, p. 197–200
    72. 72)
      • Kisku, D.R., Mehrotra, H., Gupta, P., Sing, J.K.: `SIFT-based ear recognition by fusion of detected keypoints from color similarity slice regions', Int. Conf. on Advances in Computational Tools for Engineering Applications (ACTEA), 2009, p. 380–385
    73. 73)
      • Wang, X., Yuan, W.: `Human ear recognition based on block segmentation', Int. Conf. on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), 2009, p. 262–266
    74. 74)
      • Alaraj, M., Hou, J., Fukami, T.: `A neural network based human identification frame-work using ear images', TENCON 2010–2010 IEEE Region 10 Conf., 2010
    75. 75)
    76. 76)
      • De Marsico, M., Michele, N., Riccio, D.: `HERO: human ear recognition against occlusions', IEEE Computer Society Conf. on Computer Vision and Pattern Recognition Workshops (CVPRW), 2010, p. 178
    77. 77)
      • Gutierrez, L., Melin, P., Lopez, M.: `Modular neural network integrator for human recognition from ear images', 2010 Int. Joint Conf. on Neural Networks (IJCNN), 2010
    78. 78)
      • Wang, X.q., Xia, H.y., Wang, Z.l.: `The research of ear identification based on improved algorithm of moment invariants', Third Int. Conf. on Information and Computing (ICIC), 2010, p. 58
    79. 79)
      • Wang, X., Yuan, W.: `Gabor wavelets and general discriminant analysis for ear recogniton', Eighth World Congress on Intelligent Control and Automation (WCICA), 2010, p. 6305
    80. 80)
      • Ear based personal identification approach forensic science tasks
    81. 81)
      • Wang, Z.q, Yan, X.d.: `Multi-scale feature extraction algorithm of ear image', Int. Conf. on Electric Information and Control Engineering (ICEICE), 2011, p. 528
    82. 82)
      • Lowe, G.D.: `Object recognition from local scale-invariant features', IEEE Int. Conf. on Computer Vision (ICCV 1999), 1999, 2, p. 1150–1157
    83. 83)
      • Bay, H., Tuytelaars, T., Gool, L.V.: `SURF: speeded up robust features', Proc. Ninth European Conf. on Computer Vision, 2006
    84. 84)
    85. 85)
      • Cadavid, S., Abdel-Mottaleb, M.: `3D ear modeling and recognition from video sequences using shape from shading', 19thInt. Conf. on Pattern Recognition (ICPR), 2008, p. 1–4
    86. 86)
      • Liu, H., Zhang, D.: `Fast 3D point cloud ear identification by slice curve matching', Third Int. Conf. on Computer Research and Development (ICCRD), 2011, p. 224
    87. 87)
      • Islam, S.M.S., Bennamoun, M., Mian, A.S., Davies, R.: `A fully automatic approach for human recognition from profile images using 2D and 3D ear data', Proc. 3DPVT – the Fourth Int. Symp. on 3D Data Processing, Visualization and Transmission, 2008
    88. 88)
      • Islam, S.M., Davies, R., Mian, M.A.S., Bennamoun, A.: `A fast and fully automatic ear recognition approach based on 3D local surface features', Proc. 10th Int. Conf. on Advanced Concepts for Intelligent Vision Systems. ACIVS’08, 2008, p. 1081–1092
    89. 89)
      • Passalis, G., Kakadiaris, I.A., Theoharis, T., Toderici, G., Papaioannou, T.: `Towards fast 3D ear recognition for real-life biometric applications', IEEE Conf. on Advanced Video and Signal Based Surveillance (AVSS 2007), 2007, p. 39–44
    90. 90)
      • Yan, P., Bowyer, K.W.: `A fast algorithm for ICP-based 3D shape biometrics', Fourth IEEE Workshop on Automatic Identification Advanced Technologies, 2005, p. 213–218
    91. 91)
      • Zeng, H., Dong, J.Y., Mu, Z.C., Guo, Y.: `Ear recognition based on 3D keypoint matching', IEEE Tenth Int. Conf. on Signal Processing (ICSP), 2010, p. 1694
    92. 92)
      • Zhou, J., Cadavid, S., Abdel-Mottaleb, M.: `A computationally efficient approach to 3D ear recognition employing local and holistic features', IEEE Computer Society Conf. on Computer Vision and Pattern Recognition Workshops (CVPRW), 2011, p. 98–105
    93. 93)
      • Cadavid, S., Mahoor, M.H., Abdel-Mottaleb, M.: `Multi-modal biometric modeling and recognition of the human face and ear', IEEE Int. Workshop on Safety, Security Rescue Robotics (SSRR), 2009, p. 1–6
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2011.0003
Loading

Related content

content/journals/10.1049/iet-bmt.2011.0003
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address