Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Accelerated ultraviolet weathering investigation on micro-/nano-SiO2 filled silicone rubber composites

This study attempts to elucidate whether the addition of micro and/or nano-silica (SiO2) particles can enhance the resistance of pure polydimethylsiloxane against synergistic effects of UV, temperature and high-voltage stress. Four types of composites (U-SR, M-SR, MN-SR and N-SR) are fabricated by adding micro and/or nano-silica particles and then subjected to multi-stress degradation in a test chamber. Results show that there is an apparent surface discoloration in the form of yellowish pale tint and a significant resistance to hydrophobicity reduction is offered by N-SR and MN-SR followed by M-SR and U-SR. Scanning electron microscopy and surface roughness findings proclaimed that N-SR and MN-SR offer excellent resistance against filler exposure and an increase in surface roughness. There is a minor reduction in absorbance level of Si (CH3)2 and Si–O–Si functional groups of composites but interestingly, hydrophilic hydroxyl group absorbance level is found higher in the U-SR comparatively. Furthermore, dielectric response measurements indicate considerable sensitivity to weathering with N-SR and MN-SR giving the lowest dielectric loss. Results indicate that the addition of nano-silica to pure and micro-silica filled SR can enhance its UV weathering resistance considerably by building an effective UV shielding layer.

References

    1. 1)
      • 8. Yoshimura, N., Kumagai, N.: ‘Electrical and environmental aging of silicone rubber used for outdoor insulation’, IEEE Trans. Dielectr. Electr. Insul., 1999, 6, (5), pp. 632650.
    2. 2)
      • 34. Grassie, N., Scott, G.: ‘Polymer degradation and stabilization’ (Cambridge University Press, New York, 1985).
    3. 3)
      • 36. Delman, A.D., Landy, M., Simms, B.B.: ‘Photodecomposition of polydimethylsiloxane’, J. Polym. Sci. A, Polym. Chem., 1969, 7, pp. 33753386.
    4. 4)
      • 4. Venkatesulu, B., Thomas, M.J.: ‘Long-term accelerated multistress aging of composite outdoor polymeric insulators’. IEEE Int. Conf. Solid Dielectr (ICSD), Winchester, UK, August 2006, pp. 188201.
    5. 5)
      • 11. IEC 61109: ‘Composite insulators for AC overhead lines with a nominal voltage greater than 1000 V-definitions and acceptance criteria’, 1992.
    6. 6)
      • 6. CIGRE WG D1.14: ‘Material properties for non-ceramic outdoor insulation: state of art’ (Technical Brochure, 2004), 255, pp. 2835.
    7. 7)
      • 15. Khan, Y.: ‘Degradation of high voltage polymeric insulators in arid desert's simulated environmental conditions’, Am. J. Eng. Appl. Sci., 2009, 2, pp. 438445.
    8. 8)
      • 22. Mahmoud, K.: ‘The effect of reinforcing fillers on the UV light stability of elastomers’, Paint Coat. Ind., 2000, 16, (5), pp. 106110.
    9. 9)
      • 16. Khan, Y., Al-Arainy, A.A., Malik, N.H., et al: ‘Loss and recovery of hydrophobicity of EPDM insulators in simulated arid desert environment’. Asia-Pacific Power and Energy Engineering Conf. (APPEEC), Chengdu, China, March 2010, pp. 14.
    10. 10)
      • 2. Xidong, L., Shaowu, W., Ju, F..: ‘The development and study of composite insulators in China’, IEEE Trans. Dielectr. Electr. Insul., 1999, 6, (5), pp. 586594.
    11. 11)
      • 18. Haddad, G., Gupta, R.K., Wong, K.L.: ‘Visualization of multi-factor changes in HTV silicone rubber in response to environmental exposures’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (5), pp. 21902198.
    12. 12)
      • 30. Nazir, M.T., Phung, B.T., Yu, S., et al: ‘Resistance against AC corona discharge of micro-ATH/nano-Al2O3 co-filled silicone rubber composites’, IEEE Trans. Dielectr. Electr. Insul., 2018, 25, (2), pp. 657667.
    13. 13)
      • 27. Nazir, M.T., Phung, B.T.: ‘Effect of AC corona discharge on aging of silicone rubber nanocomposites at high altitude’. IEEE Electrical Insulation Conf. (EIC), Seattle, WA, USA, June 2015, pp. 488491.
    14. 14)
      • 23. Lan, L., Wen, X., Cai, D.: ‘Corona ageing tests of RTV and RTV nanocomposite materials’. IEEE Int. Conf. Solid Dielectr (ICSD), Toulouse, France, July 2004, pp. 804807.
    15. 15)
      • 29. Nazir, M.T., Phung, B.T.: ‘AC corona resistance performance of silicone rubber composites with micro/nano silica fillers’. IEEE Int. Conf. on Dielectrics (ICD), Montpellier, France, July 2016, vol. 2, pp. 681684.
    16. 16)
      • 24. Lan, L., Yao, G., Wang, H.L., et al: ‘Characteristics of corona aged nano-composite RTV and HTV silicone rubber’. IEEE Conf. Electr. Insul. Dielectr. Phenomena (CEIDP), Shenzhen, China, October 2013, pp. 804808.
    17. 17)
      • 21. Joshi, M., Bhattacharyya, A.: ‘Nanotechnology: a new route to high-performance functional textiles’, Text. Prog., 2011, 43, (3), pp. 155233.
    18. 18)
      • 19. Ghunem, R.A., Jayaram, S.H., Cherney, E.A.: ‘Erosion of silicone rubber composites in the AC and DC inclined plane tests’, IEEE Trans. Dielectr. Electr. Insul., 2013, 20, (1), pp. 229236.
    19. 19)
      • 10. Sundararajan, R.: ‘Modified IEC 5000-h multistress aging of 28-kV thermoplastic elastomeric insulators’, IEEE Trans. Power Deliv., 2007, 22, (2), pp. 10791085.
    20. 20)
      • 28. Nazir, M.T., Phung, B.T., Hoffman, M.: ‘Effect of AC corona discharge on hydrophobic properties of silicone rubber nanocomposites’. IEEE Int. Conf. on the Properties and Applications of Dielectric Materials (ICPADM), Sydney, NSW, Australia, July 2015, pp. 412415.
    21. 21)
      • 1. Amin, M., Amin, S.: ‘Aging research on SIR and TPE insulators (an overview)’, Rev. Adv. Mater. Sci., 2014, 36, pp. 2939.
    22. 22)
      • 31. El-Hag, A.H., Simon, L.C., Jayaram, S.H., et al: ‘Erosion resistance of nano-filled silicone rubber’, IEEE Trans. Dielectr. Electr. Insul., 2006, 13, (1), pp. 122128.
    23. 23)
      • 33. http://bjzybt2014.en.b2b168.com/.
    24. 24)
      • 13. Youn, B.H., Huh, C.S.: ‘Surface degradation of HTV silicone rubber and EPDM used for outdoor insulators under accelerated ultraviolet weathering condition’, IEEE Trans. Dielectr. Electr. Insul., 2005, 12, (5), pp. 10151024.
    25. 25)
      • 26. Nazir, M.T., Phung, B.T.: ‘Ultraviolet weathering resistance performance of micro/nano silica filled silicone rubber composites for outdoor insulation’. IEEE Int. Conf. on Condition Monitoring and Diagnosis (CMD), Xi'an, China, September 2016, pp. 10351038.
    26. 26)
      • 37. Singha, S., Thomas, M.J.: ‘Dielectric properties of epoxy nanocomposites’, IEEE Trans. Dielectr. Electr. Insul., 2008, 15, (1), pp. 1223.
    27. 27)
      • 5. Amin, S.: ‘Comparative natural aging of thermoplastic elastomeric and silicon rubber insulators in Pakistan’, J. Elastom. Plast., 2012, 44, (2), pp. 115125.
    28. 28)
      • 20. Venkatesulu, B., Thomas, M.J.: ‘Erosion resistance of alumina-filled silicone rubber nanocomposites’, IEEE Trans. Dielectr. Electr. Insul., 2010, 17, (2), pp. 615624.
    29. 29)
      • 25. Nazir, M.T., Phung, B.T., Hoffman, M.: ‘Performance of silicone rubber composites with SiO2 micro/nano-filler under AC corona discharge’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (5), pp. 28042815.
    30. 30)
      • 9. Sundararajan, R., Mohammed, A., Chaipanit, N., et al: ‘In-service aging and degradation of 345 kV EPDM transmission line insulators in a coastal environment’, IEEE Trans. Dielectr. Electr. Insul., 2004, 11, (2), pp. 348361.
    31. 31)
      • 35. Hillborg, H., Gedde, U.W.: ‘Hydrophobicity changes in silicone rubbers’, IEEE Trans. Dielectr. Electr. Insul., 1999, 6, (5), pp. 703717.
    32. 32)
      • 12. Amin, S., Amin, M., Sundrarajan, R.: ‘Comparative multi stress aging of thermoplastic elastomeric and silicone rubber insulators in Pakistan’. IEEE Conf. Electr. Insul. Dielectr. Phenomena (CEIDP), Quebec, QC, Canada, February 2008, pp. 293296.
    33. 33)
      • 32. https://www.q-lab.com/documents/public/d6f438b3-dd28-4126-b3fd-659958759358.pdf.
    34. 34)
      • 14. Amin, M., Ahmed, M.: ‘Effect of UV radiation on HTV-silicone rubber insulators with moisture’. IEEE Int. Multitopic Conf. (INMIC), Lahore, Pakistan, December 2007, pp. 15.
    35. 35)
      • 38. Tanaka, T., Kozako, M., Fuse, N., et al: ‘Proposal of a multi-core model for polymer nanocomposite dielectrics’, IEEE Trans. Dielectr. Electr. Insul., 2005, 12, (4), pp. 669681.
    36. 36)
      • 17. Venkatesulu, B., Thomas, M.J.: ‘Long-term accelerated weathering of outdoor silicone rubber insulators’, IEEE Trans. Dielectr. Electr. Insul., 2011, 18, (2), pp. 418424.
    37. 37)
      • 3. Ali, M., Hackam, R.: ‘Effects of saline water and temperature on surface properties of HTV silicone rubber’, IEEE Trans. Dielectr. Electr. Insul., 2008, 15, (5), pp. 13681378.
    38. 38)
      • 7. Gubanski, S. M., Vlastos, A.E.: ‘Wettability of naturally aged silicone and EPDM composite insulators’, IEEE Trans. Power Delivery, 1990, 5, (3), pp. 15271535.
http://iet.metastore.ingenta.com/content/journals/10.1049/hve.2018.5004
Loading

Related content

content/journals/10.1049/hve.2018.5004
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address