access icon openaccess Recent advances in magnetic targeting based on high magnetic field and magnetic particles

In the past few decades, the multifunctional magnetic drug carrier based on the magnetic nanoparticles and high magnetic field has been intensively researched. The magnetic drug carrier can be targeted to the tumour area not only by the chemical protocol but also by the physical one (external field). In this review, the authors first briefly discuss the fabrication process of magnetic drug carriers, which includes the synthesis of magnetic nanoparticles, fabrication of magnetic drug carriers and conjugation of anti-tumour agents. Then different targeted protocols have been summarised, including passive targeting, biochemical active targeting and biophysical active targeting namely magnetic targeting (MT). Multiple MT results both in vitro and in vivo are introduced, in which two unconventional cases are emphasised and described. The first MT clinical research with 14 peoples was performed in the last century. A 0.5–0.8 T permanent magnet was attached to the tumour area when magnetic particles conjugated with epirubicin were injected. The side effect of epirubicin had been decreased, and the four patients showed the decreasing of a tumour which proved the feasibility of MT. Different from other targeting protocols, MT needs an extra external magnetic field. So various types of MT instruments have been shown in the final part of this review, including a single strong magnetic field, homemade electronic solenoid coil assay and commercial magnetic resonance imaging.

Inspec keywords: magnetic particles; solenoids; protocols; biomedical MRI; nanoparticles; drug delivery systems; tumours; permanent magnets; magnetic fields

Other keywords: targeting protocols; permanent magnet; magnetic flux density 0.5 T to 0.8 T; epirubicin; biophysical active targeting; high magnetic field; antitumour agents; chemical protocol; magnetic nanoparticles; passive targeting; multifunctional magnetic drug carrier; fabrication process; magnetic targeting; magnetic resonance imaging; biochemical active targeting; electronic solenoid coil assay

Subjects: Permanent magnets; Biomedical magnetic resonance imaging and spectroscopy; Solenoids and electromagnets; Patient care and treatment; Magnetic materials; Magnetostatics

References

    1. 1)
      • 7. Ye, K.C., Qin, J., Peng, Z., et al: ‘Polyethylene glycol modified dendrimer entrapped gold nanoparticles enhance CT imaging of blood pool in atherosclerotic mice’, Nanoscale Res. Lett., 2014, 9, (1), pp. 529534, doi: 10.1186/1556-276X-9-529.
    2. 2)
      • 10. Lee, N., Yoo, D., Ling, D., et al: ‘Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy’, Chem. Rev., 2015, 115, (19), pp. 1063710689, doi: 10.1021/acs.chemrev.5b00112.
    3. 3)
      • 75. Tran, L.A., Hernández-Rivera, M., Berlin, A.N., et al: ‘The use of gadolinium-carbon nanostructures to magnetically enhance stem cell retention for cellular cardiomyoplasty’, Biomaterials, 2014, 35, (2), pp. 720726, doi: 10.1016/j.biomaterials.2013.10.013.
    4. 4)
      • 81. Echarri, A.: ‘Remanent induction in a hard superconductor’, Phys. Lett., 1966, 20, (6), pp. 619621, doi: 10.1016/0031-9163(66)91142-5.
    5. 5)
      • 30. Gautier, J., Allard-Vannier, E., Burlaud-Gaillard, J., et al: ‘Efficacy and hemotoxicity of stealth doxorubicin-loaded magnetic nanovectors on breast cancer xenografts’, J. Biomed. Nanotechnol., 2015, 11, (1), pp. 177189, doi: 10.1166/jbn.2015.1920.
    6. 6)
      • 8. Veiseh, O., Gunn, J., Zhang, M., et al: ‘Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging’, Adv. Drug. Delivery Rev., 2010, 62, (3), pp. 284304, doi: 10.1016/j.addr.2009.11.002.
    7. 7)
      • 28. Kaittanis, C., Shaffer, T.M., Ogirala, A., et al: ‘Environment-responsive nanophores for therapy and treatment monitoring via molecular MRI quenching’, Nat. Commun., 2014, 5, (3), p. 3384, doi: 10.1038/ncomms4384.
    8. 8)
      • 18. Park, J., An, K., Hwang, Y., et al: ‘Ultra-large-scale syntheses of monodisperse nanocrystals’, Nat. Mater., 2004, 3, (12), pp. 891895, doi: 10.1038/nmat1251.
    9. 9)
      • 49. Pourmehran, O., Rahimi-Gorji, M., Ganji, D.D.: ‘Heat transfer and flow analysis of nanofluid flow induced by a stretching sheet in the presence of an external magnetic field’, Journal of the Taiwan Institute of Chemical Engineers, 2016, 65, pp. 162171, doi.org/10.1016/j.jtice.2016.04.035.
    10. 10)
      • 12. Kozissnik, B., Bohorquez, A.C., Dobson, J., et al: ‘Magnetic fluid hyperthermia: advances, challenges, and opportunity’, Int. J. Hyperthermia, 2013, 29, (8), pp. 706714, doi: 10.3109/02656736.2013.837200.
    11. 11)
      • 43. Moore, A., Medarova, Z., Potthast, A., et al: ‘In vivo targeting of underglycosylated MUC-1 tumor antigen using a multimodal imaging probe’, Cancer Res., 2004, 64, (5), pp. 18211827, doi: 10.1158/0008-5472.CAN-03-3230.
    12. 12)
      • 50. Rahimi-Gorji, M., Pourmehran, O., Gorji-Bandpy, M., et al: ‘Unsteady squeezing nanofluid simulation and investigation of its effect on important heat transfer parameters in presence of magnetic field’, J. Taiwan Inst. Chem. Eng., 2016, 67, pp. 467475, doi.org/10.1016/j.jtice.2016.08.001.
    13. 13)
      • 40. Sun, C., Sze, R., Zhang, M.Q.: ‘Folic acid-PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI’, J. Biomed. Mater. Res. Part A, 2006, 78A, (3), pp. 550557, doi: 10.1002/jbm.a.30781.
    14. 14)
      • 69. Qi, Y., Yang, Z., Ding, Q., et al: ‘Targeted transplantation of iron oxide-labeled, adipose-derived mesenchymal stem cells in promoting meniscus regeneration following a rabbit massive meniscal defect’, Exp. Ther. Med., 2016, 11, (2), pp. 458466, doi: 10.3892/etm.2015.2944.
    15. 15)
      • 80. Fernánde-zpacheco, R., Valdivia, J.G., Ibarra, M.R.: ‘Mgnetic nanoparticles for local drug delivery using magnetic implants’, J. Magn. Magn. Mater., 2009, 544, (1), pp. 559569, doi: 10.1007/978-1-59745-483-4_35.
    16. 16)
      • 19. Lu, A.H., Salabas, E.L., Schüth, F., et al: ‘Magnetic nanoparticles: synthesis, protection, functionalization, and application’, Angew. Chem. Int. Ed., 2007, 46, (8), pp. 12221244, doi: 10.1002/anie.200602866.
    17. 17)
      • 27. Chen, L.T., Weiss, L.: ‘Role of sinus wall in passage of erythrocytes through spleen’, Blood, 1973, 41, pp. 529537.
    18. 18)
      • 55. Alksne, J.F.: ‘Stereotactic thrombosis of intracranial aneurysms’, Neurology, 1970, 20, p. 376.
    19. 19)
      • 17. Chen, Q., Rondinone, A.J., Chakoumakos, B.C., et al: ‘Synthesis of superparamagnetic MgFe2O4 nanoparticles by coprecipitation’, Magn. Magn. Mater, 1999, 194, (1-3), pp. 17, doi: 10.1016/S0304-8853(98)00585-X.
    20. 20)
      • 32. Lee, J., Kim, H., Kim, S., et al: ‘A multifunctional mesoporous nanocontainer with an iron oxide core and a cyclodextrin gatekeeper for an efficient theranostic platform’, J. Mater. Chem., 2012, 22, (28), pp. 1406114067, doi: 10.1039/c2jm32137h.
    21. 21)
      • 21. Caruntu, D., Cushing, B.L., Caruntu, G., et al: ‘Attachment of gold nanograins onto colloidal magnetite nanocrystals’, Chem. Mater., 2005, 17, (13), pp. 33983402, doi: 10.1021/cm050280n.
    22. 22)
      • 90. Liu, H.L., Hua, M.Y., Yang, H.W., et al: ‘Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain’, Proc. Natl. Acad. Sci. U. S. A., 2010, 107, (34), pp. 1520515210, doi: 10.1073/pnas.1003388107.
    23. 23)
      • 61. Widder, K.J., Morris, R.M., Poore, G.A., et al: ‘Selective targeting of magnetic albumin microspheres containing low-dose doxorubicin: total remission in Yoshida sarcoma-bearing rats’, Eur. J. Cancer Clin. Oncol., 1983, 19, (1), pp. 135139, doi: 10.1016/0277-5379(83)90408-X.
    24. 24)
      • 54. Alksne, J.F.: ‘Magnetically controlled intravascular catheter’, Surgery, 1968, 64, pp. 339345.
    25. 25)
      • 91. Corot, C., Robert, P., Idée, J.-M., et al: ‘Recent advances in iron oxide nanocrystal technology for medical imaging’, Adv. Drug Deliv. Rev., 2006, 58, (14), pp. 14711504, doi: 10.1016/j.addr.2006.09.013.
    26. 26)
      • 26. Choi, H.S., Liu, W., Misra, P., et al: ‘Renal clearance of quantum dots’, Nat. Biotechnol., 2007, 25, (10), pp. 11651170, doi: 10.1038/nbt1340.
    27. 27)
      • 58. Viroonchaptan, E., Ueno, M., Sato, H., et al: ‘Preparation and characterization of dextran magnetite-incorporated thermo sensitive liposomes: an on-line flow system for quantifying magnetic responsiveness’, Pharm. Res., 1995, 12, (8), pp. 11761183, doi: 10.1023/A:1016216011016.
    28. 28)
      • 71. Kodama, A., Kamei, N., Kamei, G., et al: ‘In vivo bioluminescence imaging of transplanted bone marrow mesenchymal stromal cells using a magnetic delivery system in a rat fracture model’, J. Bone Joint Surg. Br., 2012, 94-B, (7), pp. 9981006, doi: 10.1302/0301-620X.94B7.28521.
    29. 29)
      • 38. Chiang, C.S., Tseng, Y.H., Liao, B.J., et al: ‘Magnetically targeted nanocapsules for PAA-Cisplatin- conjugated cores in PVA/SPIO shells via surfactant-free emulsion for reduced nephrotoxicity and enhanced lung cancer therapy’, Adv. Healthcare Mater., 2015, 4, (7), pp. 10661075, doi: 10.1002/adhm.201400794.
    30. 30)
      • 63. Pulfer, S.K., Ciccotto, S.L., Gallo, J.M.: ‘Distribution of small magnetic particles in brain tumor-bearing rats’, J. Neurooncol., 1999, 41, (2), pp. 99105, doi: 10.1023/A:1006137523591.
    31. 31)
      • 86. Shapiro, B.: ‘Towards dynamic control of magnetic fields to focus magnetic carriers to targets deep inside the body’, J. Magn. Magn. Mater., 2009, 321, (10), pp. 15941599, doi: 10.1016/j.jmmm.2009.02.094.
    32. 32)
      • 44. Wang, A.Z., Bagalkot, V., Vasilliou, C.C., et al: ‘Superparamagnetic iron oxide nanoparticle-aptamer bioconjugates for combined prostate cancer imaging and therapy’, Chem. Med. Chem., 2008, 3, (9), pp. 13111315, doi: 10.1002/cmdc.200800091.
    33. 33)
      • 15. Neveu, S., Bee, A., Robineau, M., et al: ‘Size-selective chemical synthesis of tartrate stabilized cobalt ferrite ionic magnetic fluid’, J. Colloid Interface Sci., 2002, 255, (2), pp. 293298, doi: 10.1006/jcis.2002.8679.
    34. 34)
      • 68. Kobayashi, T., Ochi, M., Yanada, S., et al: ‘A novel cell delivery system using magnetically labeled mesenchymal stem cells and an external magnetic device for clinical cartilage repair’, Arthroscopy, 2008, 24, (1), pp. 6976, doi: 10.1016/j.arthro.2007.08.017.
    35. 35)
      • 36. Hwu, J.R., Lin, Y.S., Josephrajan, T., et al: ‘Targeted paclitaxel by conjugation to iron oxide and gold nanoparticles’, J. Am. Chem. Soc, 2009, 131, (1), pp. 6668, doi: 10.1021/ja804947u.
    36. 36)
      • 84. Grief, A.D., Richardson, G.: ‘Mathematical modelling of magnetically targeted drug delivery’, J. Magn. Magn. Mater., 2005, 293, (1), pp. 455463, doi: 10.1016/j.jmmm.2005.02.040.
    37. 37)
      • 45. Leuschner, C., Kumar, C., Hansel, W., et al: ‘LHRH-conjugated magnetic iron oxide nanoparticles for detection of breast cancer metastases’, Breast Cancer Res. Treat., 2006, 99, (2), pp. 163176, doi: 10.1007/s10549-006-9199-7.
    38. 38)
      • 74. Riegler, J., Liew, A., Hynes, S.O., et al: ‘Superparamagnetic iron oxide nanoparticle targeting of MSCs in vascular injury’, Biomaterials, 2013, 34, (8), pp. 19871994, doi: 10.1016/j.biomaterials.2012.11.040.
    39. 39)
      • 93. Wilson, M.W., Kerlan, R. K.Jr., Fidelman, N.A., et al: ‘Hepatocellular carcinoma: regional therapy with a magnetic targeted carrier bound to doxorubicin in a dual MR imaging/conventional angiography suite—initial experience with four patients’, Radiology, 2004, 230, (1), pp. 287293, doi: 10.1148/radiol.2301021493.
    40. 40)
      • 35. Ponta, A., Bae, Y.: ‘Tumor-preferential sustained drug release enhances antitumor activity of block copolymer micelles’, J. Drug Targeting, 2014, 22, (7), pp. 619628, doi: 10.3109/1061186X.2014.910793.
    41. 41)
      • 13. Park, S.J., Kim, S., Lee, S., et al: ‘Cheminform abstract: synthesis and magnetic studies of uniform iron nanorods and nanospheres’, Cheminform, 2000, 31, (46), pp. 85818582, doi: 10.1021/ja001628c.
    42. 42)
      • 2. Ulbrich, K., Holá, K., Šubr, V., et al: ‘Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies’, Chem. Rev., 2016, 116, (9), pp. 53385431, doi: 10.1021/acs.chemrev.5b00589.
    43. 43)
      • 65. Tian, Y., Jiang, X., Chen, X., et al: ‘Doxorubicin-loaded magnetic silk fibroin nanoparticles for targeted therapy of multidrug-resistant cancer’, Adv. Mater., 2014, 26, (43), pp. 73937398, doi: 10.1002/adma.201403562.
    44. 44)
      • 41. Zhao, M., Beauregard, D.A., Loizou, L., et al: ‘Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent’, Nat. Med., 2001, 7, (11), pp. 12411244, doi: 10.1038/nm1101-1241.
    45. 45)
      • 57. Senyei, A., Widder, K., Czerlinski, G.: ‘Magnetic guidance of drug-carrying microspheres’, J. Appl. Phys., 1978, 49, (6), pp. 35783583, doi: dx.doi.org/10.1063/1.325219.
    46. 46)
      • 64. Goodwin, S., Peterson, C., Hoh, C., et al: ‘Targeting and retention of magnetic targeted carriers (MTCs) enhancing intra-arterial chemotherapy’, J. Magn. Magn. Mater., 1999, 194, (1-3), pp. 132139, doi: 10.1016/S0304-8853(98)00584-8.
    47. 47)
      • 72. Vaněček, V., Zablotskii, V., Forostyak, S., et al: ‘Highly efficient magnetic targeting of mesenchymal stem cells in spinal cord injury’, Int. J. Nanomed., 2012, 7, pp. 37193730, doi: 10.2147/IJN.S32824.
    48. 48)
      • 34. Kohler, N., Sun, C., Wang, J., et al: ‘Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells’, Langmuir, 2005, 21, (19), pp. 88588864, doi: 10.1021/la0503451.
    49. 49)
      • 60. Allen, L.M., Kent, J.W., Wolfe, C., et al: ‘A magnetically targetable drug carrier for paclitaxel’, in Häfeli, U., Schütt, W., Teller, J., et al (Eds.): ‘Scientific and clinical applications of magnetic carriers’ (Plenum Press, New York, 1997), pp. 481494.
    50. 50)
      • 85. Durrell, J.H., Dennis, A.R., Jaroszynski, J., et al: ‘A trapped field of 17.6T in melt-processed, bulk Gd-Ba-Cu-O reinforced with shrink-fit steel’, Supercond. Sci. Technol., 2014, 27, (8), p. 082001, doi: 10.1088/0953-2048/27/8/082001.
    51. 51)
      • 52. Alexiou, C., Diehl, D., Henninger, P., et al: ‘A high field gradient magnet or magnetic drug targeting’, IEEE Trans. Appl. Supercond., 2006, 16, (2), pp. 15271530, doi: 10.1109/TASC.2005.864457.
    52. 52)
      • 82. Takeda, S.I., Mishima, F., Fujimoto, S., et al: ‘Development of magnetically targeted drug delivery system using superconducting magnet’, J. Magn. Magn. Mater., 2007, 311, (1), pp. 367371, doi: /10.1016/j.jmmm.2006.10.1195.
    53. 53)
      • 23. Hyeon, T., Lee, S.S., Park, J., et al: ‘Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process’, J. Am. Chem. Soc., 2001, 123, (51), p. 12798, doi: 10.1021/ja016812s.
    54. 54)
      • 16. Grasset, F., Labhsetwar, N., Li, D., et al: ‘Synthesis and magnetic characterization of zinc ferrite nanoparticles with different environments: powder, colloidal solution, and zinc ferrite–silica core–shell nanoparticles’, Langmuir, 2002, 18, (21), pp. 82098216, doi: 10.1021/la020322b.
    55. 55)
      • 39. Maeda, H., Wu, J., Sawa, T., et al: ‘Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review’, J. Controlled Release, 2000, 65, (1-2), pp. 271284, doi: 10.1016/S0168-3659(99)00248-5.
    56. 56)
      • 53. Frei, E.: ‘Biomagnetics’, IEEE Trans. Magn., 1972, 8, (3), pp. 407413, doi: 10.1109/TMAG.1972.1067327.
    57. 57)
      • 77. Polyak, B., Fishbein, I., Chorny, M., et al: ‘High field gradient targeting of magnetic nanoparticle-loaded endothelial cells to the surfaces of steel stents’, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, (2), pp. 698703, doi: 10.1073/pnas.0708338105.
    58. 58)
      • 51. Dobson, J.: ‘Magnetic nanoparticles for drug delivery’, Drug Dev. Res., 2006, 67, (1), pp. 5560, doi: 10.1002/ddr.20067.
    59. 59)
      • 20. Wang, X., Zhuang, J., Peng, Q., et al: ‘A general strategy for nanocrystal synthesis’, Nature, 2005, 437, (7055), pp. 121124, doi: 10.1038/nature03968.
    60. 60)
      • 76. Silva, L.H.A., da Silva, J.R., Ferreira, G.A., et al: ‘Labeling mesenchymal cells with DMSA-coated gold and iron oxide nanoparticles: assessment of biocompatibility and potential applications’, J. Nanobiotechnol., 2016, 14, (1), p. 59, doi: 10.1186/s12951-016-0213-x.
    61. 61)
      • 67. Cores, J., Caranasos, T.G., Cheng, K.: ‘Magnetically targeted stem cell delivery for regenerative medicine’, J. Funct. Biomater., 2014, 6, (3), pp. 526546, doi: 10.3390/jfb6030526.
    62. 62)
      • 88. Darton, N.J., Sederman, A.J., Ionescu, A., et al: ‘Manipulation and tracking of superparamagnetic nanoparticles using MRI’, Nanotechnology, 2008, 19, (39), p. 395102, doi: 10.1088/0957-4484/19/39/395102.
    63. 63)
      • 5. Bozzuto, G., Molinari, M.: ‘Liposomes as nanomedical devices’, Int. J. Nanomed., 2015, 10, pp. 975999, doi: 10.2147/IJN.S68861.
    64. 64)
      • 56. Mathieu, J.B., Martel, S.: ‘Magnetic microparticle steering within the constraints of an MRI system: proof of concept of a novel targeting approach’, Biomed. Microdevices, 2007, 9, (6), pp. 801808, doi: 10.1007/s10544-007-9092-0.
    65. 65)
      • 89. Riegler, J., Wells, J.A., Kyrtatos, P.G., et al: ‘Targeted magnetic delivery and tracking of cells using a magnetic resonance imaging system’, Biomaterials, 2010, 31, (20), pp. 53665371, doi: 10.1016/j.biomaterials.2010.03.032.
    66. 66)
      • 46. Funovics, M.A., Kapeller, B., Hoeller, C., et al: ‘MR imaging of the her2/neu and 9.2.27 tumor antigens using immunospecific contrast agents’, Magn. Reson. Imaging, 2004, 22, (6), pp. 843850, doi: 10.1016/j.mri.2004.01.050.
    67. 67)
      • 4. Reddy, B., Yadav, H., Nagesha, D., et al: Polymeric micelles as novel carriers for poorly soluble drugs: a review’, J. Nanosci. Nanotechnol., 2015, 15, (6), pp. 40094018, doi: 10.1166/jnn.2015.9713.
    68. 68)
      • 31. Yu, M.K., Jeong, Y.Y., Park, J., et al: ‘Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo’, Angew. Chem., 2008, 120, (29), pp. 54425445, doi: 10.1002/ange.200800857.
    69. 69)
      • 11. Hervault, A., Thanh, N.T.: ‘Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer’, Nanoscale, 2014, 6, (20), pp. 1155311573, doi: 10.1039/C4NR03482A.
    70. 70)
      • 14. Puntes, V.F., Krishan, K.M., Alivisatos, A.P., et al: ‘Colloidal nanocrystal shape and size control: the case of cobalt’, Science, 2001, 291, (5511), p. 2115, doi: 10.1126/science.1057553.
    71. 71)
      • 9. Shin, T.H., Choi, Y., Kim, S., et al: ‘Recent advances in magnetic nanoparticle-based multi-modal imaging’, Chem. Soc. Rev., 2015, 44, (14), pp. 45014516, doi: 10.1039/C4CS00345D.
    72. 72)
      • 25. Sun, S., Zeng, H., R., D.B., et al: ‘Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles’, J. Am. Chem. Soc., 2004, 126, (1), p. 273, doi: 10.1021/ja0380852.
    73. 73)
      • 73. Yanai, A., Häfeli, U.O., Metcalfe, A.L., et al: ‘Focused magnetic stem cell targeting to the retina using superparamagnetic iron oxide nanoparticles’, Cell Transplant., 2012, 21, (6), pp. 11371148, doi: 10.3727/096368911X627435.
    74. 74)
      • 78. Dames, P., Gleich, B., Flemmer, A., et al: ‘Targeted delivery of magnetic aerosol droplets to the lung’, Nat. Nanotechnol., 2007, 2, (8), pp. 495499, doi: 10.1038/nnano.2007.217.
    75. 75)
      • 87. Nguyen, B.L., Merino, J.L., Gang, E.S.: ‘Remote navigation for ablation procedures–a new step forward in the treatment of cardiac arrhythmias’, Eur. Cardiol., 2010, 6, (3), pp. 5056, doi: 10.15420/ecr.2010.6.3.50.
    76. 76)
      • 33. N'Guyen, T.T.T., Duong, H.T.T., Basuki, J., et al: ‘Functional iron oxide magnetic nanoparticles with hyperthermia-induced drug release ability by using a combination of orthogonal click reactions’, Angew. Chem. Int. Ed., 2013, 52, (52), pp. 1415214156, doi: 10.1002/anie.201306724.
    77. 77)
      • 29. Tietze, R., Lyer, S., Dürr, S., et al: ‘Efficient drug-delivery using magnetic nanoparticles-biodistribution and therapeutic effects in tumour bearing rabbits’, Nanomedicine, 2013, 9, (7), pp. 961971, doi: 10.1016/j.nano.2013.05.001.
    78. 78)
      • 70. Oshima, S., Kamei, N., Nakasa, T., et al: ‘Enhancement of muscle repair using human mesenchymal stem cells with a magnetic targeting system in a subchronic muscle injury model’, J. Orthop. Sci., 2014, 19, (3), pp. 478488, doi: 10.1007/s00776-014-0548-9.
    79. 79)
      • 24. Sun, S., Zeng, H.: ‘Size-controlled synthesis of magnetite nanoparticles’, J. Am. Chem. Soc., 2002, 124, (28), pp. 82048205, doi: 10.1021/ja026501x.
    80. 80)
      • 66. Lübbe, A.S., Bergemann, C., Riess, H., et al: ‘Clinical experiences with magnetic drug targeting: a phase I study with 4′-epidoxorubicin in 14 patients with advanced solid tumors’, Cancer Res., 1996, 56, (20), pp. 46864693.
    81. 81)
      • 92. Dahnke, H., Schaeffter, T.: ‘Limits of detection of SPIO at 3.0 T using T2 relaxometry’, Magn. Reson. Med., 2005, 53, (5), pp. 12021206, doi: 10.1002/mrm.20435.
    82. 82)
      • 48. Pourmehran, O., Rahimi-Gorji, M., Gorji-Bandpy, M., et al: ‘Simulation of magnetic drug targeting through tracheobronchial airways in the presence of an external non-uniform magnetic field using Lagrangian magnetic particle tracking’, J. Magn. Magn. Mater., 2015, 393, pp. 380393, doi.org/10.1016/j.jmmm.2015.05.086.
    83. 83)
      • 47. Pourmehran, O., Gorji, T.B., Gorji-Bandpy, M.: ‘Magnetic drug targeting through a realistic model of human tracheobronchial airways using computational fluid and particle dynamics’, Biomech. Model. Mechanobiol., 2016, 15, (5), pp. 13551374, doi. org/10.1007/s10237-016-0768-3.
    84. 84)
      • 62. Alexiou, C., Arnold, W., Klein, R.J., et al: ‘Locoregional cancer treatment with magnetic drug targeting’, Cancer Res., 2000, 60, (23), pp. 66416648.
    85. 85)
      • 83. Ally, J., Martin, B., Khamesee, M.B., et al: ‘Magnetic targeting of aerosol particles for cancer therapy’, J. Magn. Magn. Mater., 2005, 292, (1), pp. 442449, doi: 10.1016/j.jmmm.2005.02.038.
    86. 86)
      • 37. Lee, J.H., Lee, K., Moon, S.H., et al: ‘All-in-one target-cell-specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery’, Angew. Chem. Int. Ed., 2009, 48, (23), pp. 41744179, doi: 10.1002/anie.200805998.
    87. 87)
      • 6. Tian, B., Wang, C., Zhang, S., et al: ‘Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide’, ACS Nano, 2011, 5, (9), pp. 70007009, doi: 10.1021/nn201560b.
    88. 88)
      • 59. Pulfer, S.K., Gallo, J.M.: ‘Targeting magnetic microspheres to brain tumors’, in Häfeli, U., Schütt, W., Teller, J., et al (Eds.): ‘Scientific and clinical applications of magnetic carriers’ (Plenum Press, New York, 1997), pp. 445455.
    89. 89)
      • 22. Rockenberger, J., Scher, E.C., Alivisatos, P.A., et al: ‘A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides’, J. Am. Chem. Soc., 1999, 121, (49), pp. 1159511596, doi: 10.1021/ja993280v.
    90. 90)
      • 3. Brigger, I., Dubernet, C., Couvreur, P., et al: ‘Nanoparticles in cancer therapy and diagnosis’, Adv. Drug Delivery Rev., 2012, 64, pp. 2436, doi: 10.1016/j.addr.2012.09.006.
    91. 91)
      • 42. Kelly, K.A., Allport, J.R., Tsourkas, A., et al: ‘Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticle’, Circ. Res., 2005, 96, (3), pp. 327336, doi: 10.1161/01.RES.0000155722.17881.dd.
    92. 92)
      • 79. Liu, J., Wang, Q., Wang, H., et al: ‘Design and fabrication of a catheter magnetic navigation system for cardiac arrhythmias’, IEEE, Trans. Appl. Supercond., 2016, 26, (4), p. 44020804, doi: 10.1109/TASC.2016.2514265.
    93. 93)
      • 1. Chen, W., Zheng, R., Baade, P., et al: ‘Cancer statistics in China 2015’, CA Cancer J. Clin., 2016, 66, (2), pp. 115132, doi: 10.3322/caac.21338.
http://iet.metastore.ingenta.com/content/journals/10.1049/hve.2017.0082
Loading

Related content

content/journals/10.1049/hve.2017.0082
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading