http://iet.metastore.ingenta.com
1887

access icon openaccess Potential of silicon carbide MOSFETs in the DC/DC converters for future HVDC offshore wind farms

  • HTML
    101.150390625Kb
  • PDF
    3.85459041595459MB
  • XML
    108.380859375Kb
Loading full text...

Full text loading...

/deliver/fulltext/hve/2/4/HVE.2017.0070.html;jsessionid=yly98bwi75wc.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fhve.2017.0070&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Blarke, M.B., Jenkins, B.M.: ‘SuperGrid or SmartGrid: competing strategies for large-scale integration of intermittent renewables?’, Energy Policy, 2013, 58, pp. 381390.
    2. 2)
      • 2. Pan, J., Bala, S., Callavic, M., et al: ‘DC connection of offshore wind power plants without platform’. Proc. 13th Wind Integration Workshop, Berlin, Germany, November 2014.
    3. 3)
      • 3. Tiku, D.: ‘DC power transmission: mercury-Arc to thyristor HVDC valves [history]’, IEEE Power Energy Mag., 2014, 12, (2), pp. 7696.
    4. 4)
      • 4. Massoud, A.M., Finney, S.J., Williams, B.W.: ‘Multilevel converters and series connection of IGBT evaluation for high-power, high-voltage applications’. Proc. Second Int. Conf. on Power Electronics, Machines and Drives (PEMD), 2004, vol. 1, pp. 15.
    5. 5)
      • 5. Ladoux, P., Marino, P., Raimondo, G., et al: ‘Comparison of high voltage modular AC/DC converters’. Proc. Int. Symp. on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), 2012, pp. 843848.
    6. 6)
      • 6. Lesnicar, A., Marquardt, R.: ‘An innovative modular multilevel converter topology suitable for a wide power range’. Proc. IEEE Power Tech Conf., Bologna, 2003, vol. 3, p. 6.
    7. 7)
      • 7. Modeer, T., Nee, H.P., Norrga, S.: ‘Loss comparison of different sub-module implementations for modular multilevel converters in HVDC applications’. Proc. 14th European Conf. on Power Electronics and Applications (EPE 2011), 2011, pp. 17.
    8. 8)
      • 8. Ladoux, P., Serbia, N., Marino, P., et al: ‘Comparative study of variant topologies for MMC’. Proc. Int. Symp. on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), 2014, pp. 659664.
    9. 9)
      • 9. Ladoux, P., Serbia, N., Carroll, E.: ‘On the potential of IGCTs in HVDC’, IEEE J. Emerg. Sel. Top. Power Electron., 2015, 03, (99), pp. 11.
    10. 10)
      • 10. Hu, P., Jiang, D.: ‘A level-increased nearest level modulation method for modular multilevel converters’, IEEE Trans. Power Electron., 2015, 30, (4), pp. 18361842.
    11. 11)
      • 11. Millan, J., Godignon, P., Perpina, X., et al: ‘A survey of wide bandgap power semiconductor devices’, IEEE Trans. Power Electron., 2014, 29, (5), pp. 21552163.
    12. 12)
      • 12. Casady, J.B., Pala, V., Lichtenwalner, D.J., et al: ‘New generation 10 kV SiC Power MOSFET and diodes for industrial applications’. Proc. Int. Exhibition and Conf. for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management (PCIM Europe 2015), pp. 18.
    13. 13)
      • 13. Voormolen, J.A., Junginger, H.M., Van Sark, W.G.J.H.M.: ‘Unravelling historical cost developments of offshore wind energy in Europe’, Energy Policy, 2016, 88, pp. 435444.
    14. 14)
      • 14. E.W.E. Association: ‘Pure power – wind energy targets for 2020 and 2030’ (E. W. E. Association, 2011), pp. 178.
    15. 15)
      • 15. Yaramasu, V., Wu, B., Sen, P.C., et al: ‘High-power wind energy conversion systems: state-of-the-art and emerging technologies’, Proc. IEEE, 2015, 103, (5), pp. 740788.
    16. 16)
      • 16. Bresesti, P., Kling, W.L., Hendriks, R.L., et al: ‘HVDC connection of offshore wind-farms to the transmission system’, IEEE Trans. Energy Convers., 2007, 22, (1), pp. 3743.
    17. 17)
      • 17. Reed, G.F., Hassan, H.A.A., Korytowski, M.J., et al: ‘Comparison of HVAC and HVDC solutions for offshore wind-farms with a procedure for system economic evaluation’. IEEE Energytech, 2013, pp. 17.
    18. 18)
      • 18. Alagab, S.M., Tennakoon, S., Gould, C.: ‘Review of wind-farm power collection schemes’. Proc. 50th Int. Universities Power Engineering Conf. (UPEC), 2015, pp. 15.
    19. 19)
      • 19. Meah, K., Ula, S.: ‘Comparative evaluation of HVDC and HVAC transmission systems’, IEEE Power Engineering Society General Meeting, 2007, pp. 15.
    20. 20)
      • 20. Sellick, R.L., Åkerberg, M.: ‘Comparison of HVDC light (VSC) and HVDC classic (LCC) site aspects, for a 500 MW 400 kV HVDC transmission scheme’. Proc. 10th IET Int. Conf. on AC and DC Power Transmission (ACDC 2012), 2012, pp. 16.
    21. 21)
      • 21. Barker, C., Davidson, C., Trainer, D., et al: ‘Requirements of DC/DC converters to facilitate large DC grids’. Cigré, 2012.
    22. 22)
      • 22. Ferreira, A.J.: ‘The multilevel modular DC converter’, IEEE Trans. Power Electron., 2013, 28, (10), pp. 44604465.
    23. 23)
      • 23. Kenzelmann, S., Rufer, A., Dujic, D., et al: ‘Isolated DC/DC structure based on modular multilevel converter’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 8998.
    24. 24)
      • 24. Adam, G.P., Gowaid, I.A., Finney, I.A., et al: ‘Review of DC/DC converters for multi-terminal HVDC transmission networks’, IET Power Electron., 2016, 9, (2), pp. 281296.
    25. 25)
      • 25. Kenzelmann, S., Dujic, D., Canales, F., et al: ‘Modular DC/DC converter: comparison of modulation methods’. Proc. 15th Int. Power Electronics and Motion Control Conf. (EPE/PEMC), pp. LS2a.11–LS2a.1–7.
    26. 26)
      • 26. Kenzelmann, S.: ‘Modular DC/DC converter for DC distribution and collection networks’. PhD thesis, Ecole Polytechnique Fédérale de Lausanne, 2012.
    27. 27)
      • 27. Agheb, E., Hoidalen, H.K.: ‘Medium frequency high power transformers, state of art and challenges’. Proc. Int. Conf. in Renewable Energy Research and Applications (ICRERA), 2012, pp. 16.
    28. 28)
      • 28. Drofenik, U.: ‘A 150 kW medium frequency transformer optimized for maximum power density’. Proc. 7th Int. Conf. on Integrated Power Electronics Systems (CIPS), 2012, pp. 16.
    29. 29)
      • 29. Kjellqvist, T., Norrga, S., Ostlund, S.: ‘Design considerations for a medium frequency transformer in a line side power conversion system’. Proc. IEEE 35th Annual Power Electronics Specialists Conf. (PESC 04), 2004, vol. 1, pp. 704710.
    30. 30)
      • 30. Mogorovic, M., Dujic, D.: ‘Medium frequency transformer design and optimization’. Proc. Int. Exhibition and Conf. for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management (PCIM Europe 2017).
    31. 31)
      • 31. De Doncker, R.W.A., Divan, D.M., Kheraluwala, M.H.: ‘A three-phase soft-switched high-power-density DC/DC converter for high-power applications’, IEEE Trans. Ind. Appl., 1991, 27, (1), pp. 6373.
    32. 32)
      • 32. Schibli, N.: ‘Symmetrical multilevel converters with two quadrants DC/DC feeding’. PhD thesis, Ecole Polytechnique Fédérale de Lausanne, 2000.
    33. 33)
      • 33. Erickson, R.W., Makisimovic, D.: ‘Fundamentals of power electronics’ (Springer, 2013), pp. 705761.
    34. 34)
      • 34. Foch, H., Ladoux, P., Piquet, H.: ‘Association de convertisseurs assurant une liaison énergétique’. Techniques de l'ingénieur, 2010, d3178.
    35. 35)
      • 35. Lagier, T., Ladoux, P.: ‘Analysis of voltage and current unbalance in a multi-converter topology for a DC-based offshore wind-farm’. Proc. Int. Exhibition and Conf. for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management (PCIM Europe 2016), 2016, pp. 18.
    36. 36)
      • 36. Lagier, T., Ladoux, P.: ‘A comparison of isolated DC/DC converters for HVDC off-shore wind-farms’. Proc. Int. Conf. on Clean Electrical Power (ICCEP), Italy, 2015, pp. 3339.
    37. 37)
      • 37. Bahmani, M.A., Thiringer, T., Kharezy, M.: ‘Design methodology and optimization of a medium-frequency transformer for high-power DC applications’, IEEE Trans. Ind. Appl., 2016, 52, (5), pp. 42254233.
    38. 38)
      • 38. Steiner, M., Reinold, H.: ‘Medium frequency topology in railway applications’. Proc. European Conf. on Power Electronics and Applications, 2007, pp. 110.
    39. 39)
      • 39. Ortiz, G., Biela, J., Bortis, D., et al: ‘1 Megawatt, 20 kHz, isolated, bidirectional 12 to 1.2 kV DC/DC converter for renewable energy applications’. Proc. Int. Power Electronics Conf. (IPEC), 2010, pp. 32123219.
    40. 40)
      • 40. Casarin, J, Ladoux, P., Lasserre, P.: ‘10 kV SiC MOSFETs versus 6.5 kV Si-IGBTs for medium frequency transformer application in railway traction’. Proc. Int. Conf. on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles (ESARS), 2015, pp. 16.
    41. 41)
      • 41. FZ1500R33HE3 power module datasheet’. Available at http://www.infineon.com/dgdl/Infineon-FZ1500R33HE3-DS-v03_01-en_de.pdf?fileId=db3a304314dca389011527dfc61411c3, accessed 25 April 2017.
    42. 42)
      • 42. Hayes, J., Curbow, A., Sparkman, B., et al: ‘Dynamic characterization of next generation medium voltage (3.3 & 10 kV) silicon carbide power modules’. Proc. Int. Exhibition and Conf. for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management (PCIM Europe 2017).
    43. 43)
      • 43. PLEXIM – Electrical Engineering Software’. Available at http://www.plexim.com, accessed 25 April 2017.
    44. 44)
      • 44. Joseph, P., Hennessey, J.: ‘Some aspects of wind power statistics’, J. Appl. Meteorol., 1977, 16, (2), pp. 119128.
    45. 45)
      • 45. Morgan, E.C., Lackner, M., Vogel, R.M., et al: ‘Probability distributions for offshore wind speeds’, Energy Convers. Manage., 2011, 52, (1), pp. 1526.
    46. 46)
      • 46. Quick scan wind-farm efficiencies of the Borssele location – Energy Research Center of the Netherlands’. Available at http://english.rvo.nl/sites/default/files/2014/10/Quick%20scan%20wind%20farm%20efficiencies%20of%20the%20Borssele%20location%20-%20ECN%20%282014%29.pdf, accessed 25 April 2017.
    47. 47)
      • 47. Ortiz, G., Biela, J., Kolar, J.W.: ‘Optimized design of medium frequency transformers with high isolation requirements’. Proc. 36th Annual Conf. on IEEE Industrial Electronics Society (IECON 2010), 2010, pp. 631638.
    48. 48)
      • 48. Sellick, R.L., Agamy, M.S., Hao, L., et al: ‘A high-speed HVDC breaker topology with integral voltage-changing capability’. Proc. IEEE Electrical Insulation Conf. (EIC), 2015, pp. 123126.
http://iet.metastore.ingenta.com/content/journals/10.1049/hve.2017.0070
Loading

Related content

content/journals/10.1049/hve.2017.0070
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address