access icon openaccess Potential of silicon carbide MOSFETs in the DC/DC converters for future HVDC offshore wind farms

High-voltage direct current (HVDC) is more and more often implemented for long distance electrical energy transmission, especially for off-shore wind farms. In this study, a full DC off-shore wind farm, which requires a high-power and high-voltage DC/DC converter, is considered. In order to reduce the size of the converter, the trend is to increase operating frequency. Silicon carbide (SiC) metal–oxide–semiconductor field-effect transistors (MOSFETs) are becoming industrially available and give scope for the realisation of high-performance DC/DC converters based on modular architectures. This study presents a prospective analysis of the potential of such devices in HVDC power systems. Considering the characteristics of Si insulated-gate bipolar transistor and SiC MOSFET power modules, two DC/DC converter topologies are compared in terms of losses and number of components. In conclusion, a study of the efficiency based on converter energy loss is presented.

Inspec keywords: wind power plants; silicon compounds; insulated gate bipolar transistors; offshore installations; DC-DC power convertors; MOSFET; HVDC power convertors; wide band gap semiconductors

Other keywords: metal-oxide-semiconductor field-effect transistors; modular architectures; high-voltage direct current offshore wind farms; SiC; Si; future HVDC offshore wind farms; DC-DC converters; silicon carbide MOSFET power modules; silicon insulated-gate bipolar transistor; full DC off-shore wind farm; converter energy loss

Subjects: DC-DC power convertors; Insulated gate field effect transistors; AC-DC power convertors (rectifiers); Bipolar transistors; DC-AC power convertors (invertors); Wind power plants; d.c. transmission

References

    1. 1)
      • 17. Reed, G.F., Hassan, H.A.A., Korytowski, M.J., et al: ‘Comparison of HVAC and HVDC solutions for offshore wind-farms with a procedure for system economic evaluation’. IEEE Energytech, 2013, pp. 17.
    2. 2)
      • 34. Foch, H., Ladoux, P., Piquet, H.: ‘Association de convertisseurs assurant une liaison énergétique’. Techniques de l'ingénieur, 2010, d3178.
    3. 3)
      • 45. Morgan, E.C., Lackner, M., Vogel, R.M., et al: ‘Probability distributions for offshore wind speeds’, Energy Convers. Manage., 2011, 52, (1), pp. 1526.
    4. 4)
      • 2. Pan, J., Bala, S., Callavic, M., et al: ‘DC connection of offshore wind power plants without platform’. Proc. 13th Wind Integration Workshop, Berlin, Germany, November 2014.
    5. 5)
      • 48. Sellick, R.L., Agamy, M.S., Hao, L., et al: ‘A high-speed HVDC breaker topology with integral voltage-changing capability’. Proc. IEEE Electrical Insulation Conf. (EIC), 2015, pp. 123126.
    6. 6)
      • 41. FZ1500R33HE3 power module datasheet’. Available at http://www.infineon.com/dgdl/Infineon-FZ1500R33HE3-DS-v03_01-en_de.pdf?fileId=db3a304314dca389011527dfc61411c3, accessed 25 April 2017.
    7. 7)
      • 6. Lesnicar, A., Marquardt, R.: ‘An innovative modular multilevel converter topology suitable for a wide power range’. Proc. IEEE Power Tech Conf., Bologna, 2003, vol. 3, p. 6.
    8. 8)
      • 33. Erickson, R.W., Makisimovic, D.: ‘Fundamentals of power electronics’ (Springer, 2013), pp. 705761.
    9. 9)
      • 10. Hu, P., Jiang, D.: ‘A level-increased nearest level modulation method for modular multilevel converters’, IEEE Trans. Power Electron., 2015, 30, (4), pp. 18361842.
    10. 10)
      • 12. Casady, J.B., Pala, V., Lichtenwalner, D.J., et al: ‘New generation 10 kV SiC Power MOSFET and diodes for industrial applications’. Proc. Int. Exhibition and Conf. for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management (PCIM Europe 2015), pp. 18.
    11. 11)
      • 39. Ortiz, G., Biela, J., Bortis, D., et al: ‘1 Megawatt, 20 kHz, isolated, bidirectional 12 to 1.2 kV DC/DC converter for renewable energy applications’. Proc. Int. Power Electronics Conf. (IPEC), 2010, pp. 32123219.
    12. 12)
      • 23. Kenzelmann, S., Rufer, A., Dujic, D., et al: ‘Isolated DC/DC structure based on modular multilevel converter’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 8998.
    13. 13)
      • 9. Ladoux, P., Serbia, N., Carroll, E.: ‘On the potential of IGCTs in HVDC’, IEEE J. Emerg. Sel. Top. Power Electron., 2015, 03, (99), pp. 11.
    14. 14)
      • 40. Casarin, J, Ladoux, P., Lasserre, P.: ‘10 kV SiC MOSFETs versus 6.5 kV Si-IGBTs for medium frequency transformer application in railway traction’. Proc. Int. Conf. on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles (ESARS), 2015, pp. 16.
    15. 15)
      • 29. Kjellqvist, T., Norrga, S., Ostlund, S.: ‘Design considerations for a medium frequency transformer in a line side power conversion system’. Proc. IEEE 35th Annual Power Electronics Specialists Conf. (PESC 04), 2004, vol. 1, pp. 704710.
    16. 16)
      • 37. Bahmani, M.A., Thiringer, T., Kharezy, M.: ‘Design methodology and optimization of a medium-frequency transformer for high-power DC applications’, IEEE Trans. Ind. Appl., 2016, 52, (5), pp. 42254233.
    17. 17)
      • 43. PLEXIM – Electrical Engineering Software’. Available at http://www.plexim.com, accessed 25 April 2017.
    18. 18)
      • 30. Mogorovic, M., Dujic, D.: ‘Medium frequency transformer design and optimization’. Proc. Int. Exhibition and Conf. for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management (PCIM Europe 2017).
    19. 19)
      • 25. Kenzelmann, S., Dujic, D., Canales, F., et al: ‘Modular DC/DC converter: comparison of modulation methods’. Proc. 15th Int. Power Electronics and Motion Control Conf. (EPE/PEMC), pp. LS2a.11–LS2a.1–7.
    20. 20)
      • 44. Joseph, P., Hennessey, J.: ‘Some aspects of wind power statistics’, J. Appl. Meteorol., 1977, 16, (2), pp. 119128.
    21. 21)
      • 26. Kenzelmann, S.: ‘Modular DC/DC converter for DC distribution and collection networks’. PhD thesis, Ecole Polytechnique Fédérale de Lausanne, 2012.
    22. 22)
      • 24. Adam, G.P., Gowaid, I.A., Finney, I.A., et al: ‘Review of DC/DC converters for multi-terminal HVDC transmission networks’, IET Power Electron., 2016, 9, (2), pp. 281296.
    23. 23)
      • 28. Drofenik, U.: ‘A 150 kW medium frequency transformer optimized for maximum power density’. Proc. 7th Int. Conf. on Integrated Power Electronics Systems (CIPS), 2012, pp. 16.
    24. 24)
      • 42. Hayes, J., Curbow, A., Sparkman, B., et al: ‘Dynamic characterization of next generation medium voltage (3.3 & 10 kV) silicon carbide power modules’. Proc. Int. Exhibition and Conf. for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management (PCIM Europe 2017).
    25. 25)
      • 36. Lagier, T., Ladoux, P.: ‘A comparison of isolated DC/DC converters for HVDC off-shore wind-farms’. Proc. Int. Conf. on Clean Electrical Power (ICCEP), Italy, 2015, pp. 3339.
    26. 26)
      • 8. Ladoux, P., Serbia, N., Marino, P., et al: ‘Comparative study of variant topologies for MMC’. Proc. Int. Symp. on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), 2014, pp. 659664.
    27. 27)
      • 31. De Doncker, R.W.A., Divan, D.M., Kheraluwala, M.H.: ‘A three-phase soft-switched high-power-density DC/DC converter for high-power applications’, IEEE Trans. Ind. Appl., 1991, 27, (1), pp. 6373.
    28. 28)
      • 22. Ferreira, A.J.: ‘The multilevel modular DC converter’, IEEE Trans. Power Electron., 2013, 28, (10), pp. 44604465.
    29. 29)
      • 3. Tiku, D.: ‘DC power transmission: mercury-Arc to thyristor HVDC valves [history]’, IEEE Power Energy Mag., 2014, 12, (2), pp. 7696.
    30. 30)
      • 32. Schibli, N.: ‘Symmetrical multilevel converters with two quadrants DC/DC feeding’. PhD thesis, Ecole Polytechnique Fédérale de Lausanne, 2000.
    31. 31)
      • 21. Barker, C., Davidson, C., Trainer, D., et al: ‘Requirements of DC/DC converters to facilitate large DC grids’. Cigré, 2012.
    32. 32)
      • 20. Sellick, R.L., Åkerberg, M.: ‘Comparison of HVDC light (VSC) and HVDC classic (LCC) site aspects, for a 500 MW 400 kV HVDC transmission scheme’. Proc. 10th IET Int. Conf. on AC and DC Power Transmission (ACDC 2012), 2012, pp. 16.
    33. 33)
      • 1. Blarke, M.B., Jenkins, B.M.: ‘SuperGrid or SmartGrid: competing strategies for large-scale integration of intermittent renewables?’, Energy Policy, 2013, 58, pp. 381390.
    34. 34)
      • 46. Quick scan wind-farm efficiencies of the Borssele location – Energy Research Center of the Netherlands’. Available at http://english.rvo.nl/sites/default/files/2014/10/Quick%20scan%20wind%20farm%20efficiencies%20of%20the%20Borssele%20location%20-%20ECN%20%282014%29.pdf, accessed 25 April 2017.
    35. 35)
      • 19. Meah, K., Ula, S.: ‘Comparative evaluation of HVDC and HVAC transmission systems’, IEEE Power Engineering Society General Meeting, 2007, pp. 15.
    36. 36)
      • 13. Voormolen, J.A., Junginger, H.M., Van Sark, W.G.J.H.M.: ‘Unravelling historical cost developments of offshore wind energy in Europe’, Energy Policy, 2016, 88, pp. 435444.
    37. 37)
      • 47. Ortiz, G., Biela, J., Kolar, J.W.: ‘Optimized design of medium frequency transformers with high isolation requirements’. Proc. 36th Annual Conf. on IEEE Industrial Electronics Society (IECON 2010), 2010, pp. 631638.
    38. 38)
      • 27. Agheb, E., Hoidalen, H.K.: ‘Medium frequency high power transformers, state of art and challenges’. Proc. Int. Conf. in Renewable Energy Research and Applications (ICRERA), 2012, pp. 16.
    39. 39)
      • 7. Modeer, T., Nee, H.P., Norrga, S.: ‘Loss comparison of different sub-module implementations for modular multilevel converters in HVDC applications’. Proc. 14th European Conf. on Power Electronics and Applications (EPE 2011), 2011, pp. 17.
    40. 40)
      • 18. Alagab, S.M., Tennakoon, S., Gould, C.: ‘Review of wind-farm power collection schemes’. Proc. 50th Int. Universities Power Engineering Conf. (UPEC), 2015, pp. 15.
    41. 41)
      • 35. Lagier, T., Ladoux, P.: ‘Analysis of voltage and current unbalance in a multi-converter topology for a DC-based offshore wind-farm’. Proc. Int. Exhibition and Conf. for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management (PCIM Europe 2016), 2016, pp. 18.
    42. 42)
      • 14. E.W.E. Association: ‘Pure power – wind energy targets for 2020 and 2030’ (E. W. E. Association, 2011), pp. 178.
    43. 43)
      • 16. Bresesti, P., Kling, W.L., Hendriks, R.L., et al: ‘HVDC connection of offshore wind-farms to the transmission system’, IEEE Trans. Energy Convers., 2007, 22, (1), pp. 3743.
    44. 44)
      • 15. Yaramasu, V., Wu, B., Sen, P.C., et al: ‘High-power wind energy conversion systems: state-of-the-art and emerging technologies’, Proc. IEEE, 2015, 103, (5), pp. 740788.
    45. 45)
      • 5. Ladoux, P., Marino, P., Raimondo, G., et al: ‘Comparison of high voltage modular AC/DC converters’. Proc. Int. Symp. on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), 2012, pp. 843848.
    46. 46)
      • 11. Millan, J., Godignon, P., Perpina, X., et al: ‘A survey of wide bandgap power semiconductor devices’, IEEE Trans. Power Electron., 2014, 29, (5), pp. 21552163.
    47. 47)
      • 38. Steiner, M., Reinold, H.: ‘Medium frequency topology in railway applications’. Proc. European Conf. on Power Electronics and Applications, 2007, pp. 110.
    48. 48)
      • 4. Massoud, A.M., Finney, S.J., Williams, B.W.: ‘Multilevel converters and series connection of IGBT evaluation for high-power, high-voltage applications’. Proc. Second Int. Conf. on Power Electronics, Machines and Drives (PEMD), 2004, vol. 1, pp. 15.
http://iet.metastore.ingenta.com/content/journals/10.1049/hve.2017.0070
Loading

Related content

content/journals/10.1049/hve.2017.0070
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading