Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Review of different fault detection methods and their impact on pre-emptive VSC-HVDC dc protection performance

Multi-terminal voltage-sourced converters (VSC) high-voltage direct current (HVDC) transmission system is expected to play a vital role in future power systems. Compared with ac power transmission, dc transmission is more vulnerable to faults due to low dc-side impedances and sensitive power electronics in the converters. Dc protection issues must be tackled before any multi-terminal VSC-HVDC grid can be built. The multi-terminal VSC-HVDC system is studied in detail using switching models for two-level converters, detailed equivalent models for the modular multi-level converters, detailed hybrid circuit breaker switching models and frequency-dependent phase models for dc cables. Using such high-fidelity system models, a systematic study of HVDC fault protection methodologies in more detail than previous studies is conducted. This is the first comprehensive study that includes pre-emptive circuit breaker operation. The results presented in this study underline the benefits of such a detailed treatment of the breaker, and of considering it as part of a fast power electronics system rather than isolated dc equipment. The study identifies the best existing fault detection method and tests it extensively. In order to further improve post-fault system recovery response, which is a key but often neglected part of previous studies, a novel bump-less transfer control has been implemented in the converters.

References

    1. 1)
      • 40. Trench Company Report: ‘HVDC Divider, Compensated Voltage Divider for HVDC Transmission Systems’, TRENCH2012.
    2. 2)
      • 26. Liang, J., Gomis-Bellmunt, O., Ekanayake, J., et al: ‘Control of multi-terminal VSC-HVDC transmission for offshore wind power’. 13th European Conf. Power Electronics and Applications. EPE 2009, 2009, pp. 110.
    3. 3)
      • 30. Xu, J., Zhao, C., Liu, W., et al: ‘Accelerated model of modular multilevel converters in PSCAD/EMTDC’, IEEE Trans. Power Deliv., 2013, 28, pp. 129136.
    4. 4)
      • 37. Janke, O.: ‘The directional reactive power undervoltage protection – a protection concept for connecting decentralized renewable energy sources’. 11th IET Int. Conf. Developments in Power Systems Protection (DPSP 2012), Birmingham, UK, 2012, pp. 15.
    5. 5)
      • 15. Bucher, M.K., Franck, C.M.: ‘Comparison of fault currents in multiterminal HVDC grids with different grounding schemes’. PES General Meeting Conf. Exposition, 2014, pp. 15.
    6. 6)
      • 36. Gao, H., Li, J., Xu, B.: ‘Principle and implementation of current differential protection in distribution networks with high penetration of DGs’, IEEE Trans. Power Deliv., 2017, 32, (1), pp. 565574.
    7. 7)
      • 20. Callavik, M., Blomberg, A., Häfner, J., et al: ‘The hybrid HVDC breaker’, ABB Grid Systems, November 2012.
    8. 8)
      • 8. Leterme, W., VanHertem, D.: ‘Classification of fault clearing strategies for HVDC grids’. Presented at the Cigre Conf., Lund, 2015.
    9. 9)
      • 41. Kankanala, P., Srivastava, S.C., Srivastava, A.K., et al: ‘Optimal control of voltage and power in a multi-zonal MVDC shipboard power system’, IEEE Trans. Power Syst., 2012, 27, pp. 642650.
    10. 10)
      • 11. Nanayakkara, O.M.K.K., Rajapakse, A.D., Wachal, R.: ‘Location of DC line faults in conventional HVDC systems with segments of cables and overhead lines using terminal measurements’, IEEE Trans. Power Deliv., 2012, 27, pp. 279288.
    11. 11)
      • 12. Liu, X., Osman, A.H., Malik, O.P.: ‘Hybrid traveling wave/boundary protection for monopolar HVDC line’, IEEE Trans. Power Deliv., 2009, 24, pp. 569578.
    12. 12)
      • 38. Mallat, S.: ‘A wavelet tour of singal processing’ (Academic Press, 1999).
    13. 13)
      • 25. Haileselassie, T.M., Uhlen, K.: ‘Impact of DC line voltage drops on power flow of MTDC using droop control’, IEEE Trans. Power System, 2012, 27, pp. 14411449.
    14. 14)
      • 35. Baran, M.E., Mahajan, N.R.: ‘Overcurrent protection on voltage-source-converter-based multiterminal DC distribution systems’, IEEE Trans. Power Deliv., 2007, 22, (1), pp. 406412.
    15. 15)
      • 16. Leterme, W., Tielens, P., De Boeck, S., et al: ‘Overview of grounding and configuration options for meshed HVDC grids’, IEEE Trans. Power Deliv., 2014, 29, (6), pp. 24672475.
    16. 16)
      • 5. ENTSOE: ‘Offshore transmission technology’, ENTSOE website.
    17. 17)
      • 3. Rudervall, R., Charpentier, J.P., Sharma, R.: ‘High voltage direct current (HVDC) transmission systems technology review paper’. Presented at the Energy Week 2000, Washington, DC, USA, 2000.
    18. 18)
      • 31. Beddard, A., Barnes, M., Preece, R.: ‘Comparison of detailed modeling techniques for MMC employed on VSC-HVDC schemes’, IEEE Trans. Power Deliv., 2014, PP, pp. 111.
    19. 19)
      • 14. Sneath, J., Rajapakse, A.D.: ‘Fault detection and interruption in an earthed HVDC grid using ROCOV and hybrid DC breakers’, IEEE Trans. Power Deliv., 2014, PP, pp. 11.
    20. 20)
      • 13. Ying, Z., Nengling, T., Bin, X.: ‘Fault analysis and traveling-wave protection scheme for bipolar HVDC lines’, IEEE Trans. Power Deliv., 2012, 27, pp. 15831591.
    21. 21)
      • 32. Beddard, A., Barnes, M.: ‘HVDC cable modelling for VSC-HVDC applications’. PES General Meeting Conf. Exposition, 2014, pp. 15.
    22. 22)
      • 39. Kucuksari, S., Karady, G.G.: ‘Experimental comparison of conventional and optical current transformers’, IEEE Trans. Power Deliv., 2010, 25, pp. 24552463.
    23. 23)
      • 27. Chaudhary, S.K., Teodorescu, R., Rodriguez, P., et al: ‘Modelling and simulation of VSC-HVDC connection for wind power plants’. Proc. 5th Nordic Wind Power Conf., 2009.
    24. 24)
      • 19. Jacobson, B.: ‘Developments in multiterminal HVDC’, HVDC Plenary Session, ABB, Winnipeg, Manitoba, 2011.
    25. 25)
      • 1. ENTSOE. 10-Year Network Development Plan 2012 [Online]. Available at https://www.entsoe.eu/fileadmin/user_upload/_library/SDC/TYNDP/2012/TYNDP_2012_report.pdf.
    26. 26)
      • 9. Naidoo, D., Ijumba, N.M.: ‘HVDC line protection for the proposed future HVDC systems’. Int. Conf. Power Systems Technology PowerCon., 2004, vol. 2, pp. 13271332.
    27. 27)
      • 4. National Grid, The CROWN ESTATE: ‘Offshore transmission network feasibility study’, The CROWN ESTATE website.
    28. 28)
      • 24. Chen, H., Wang, C., Zhang, F., et al: ‘Control strategy research of VSC based multiterminal HVDC system’. IEEE PES on Power Systems Conf. Exposition (PSCE), 2006, pp. 19861990.
    29. 29)
      • 22. Anderson D, H.A.: ‘Passive and active DC breakers in the three Gorges-Changzhou HVDC project’. Proc. Int. Conf. Power Systems, 2001, pp. 391395.
    30. 30)
      • 17. Working Group B4.52: ‘HVDC Grid Feasibility Study’, Cigre 2013.
    31. 31)
      • 34. Tahata, K., El Oukaili, S., Kamei, K., et al: ‘HVDC circuit breakers for HVDC grid applications’. 11th IET Int. Conf. AC and DC Power Transmission, 2015, pp. 19.
    32. 32)
      • 42. Levine, W.S.: ‘Bumpless transfer’, in Levine, W.S. (Ed.): ‘The control handbook’, vol. 1 (CRC Press, 1996, 1st edn.), p. 1507.
    33. 33)
      • 21. Cwikowski, O., Barnes, M., Shuttleworth, R., et al: ‘Analysis and simualtion of the proactive hybrid circuit breaker’. 11th IEEE Int. Conf. Power Electronics and Drive Systems, Sydney, 2015.
    34. 34)
      • 10. Nanayakkara, O.M.K.K., Rajapakse, A.D., Wachal, R.: ‘Traveling-wave-based line fault location in star-connected multiterminal HVDC systems’, IEEE Trans. Power Deliv., 2012, 27, pp. 22862294.
    35. 35)
      • 29. Gnanarathna, U.N., Gole, A.M., Jayasinghe, R.P.: ‘Efficient modeling of modular multilevel HVDC converters (MMC) on electromagnetic transient simulation programs’, IEEE Trans. Power Deliv., 2011, 26, pp. 316324.
    36. 36)
      • 18. Glasdam, J., Hjerrild, J., Kocewiak, L.H., et al: ‘Review on multi-level voltage source converter based HVDC technologies for grid connection of large offshore wind farms’. IEEE Int. Conf. Power System Technology (POWERCON), 2012, pp. 16.
    37. 37)
      • 2. Bahrman, M.P., Johansson, J.G., Nilsson, B.A.: ‘Voltage source converter transmission technologies: the right fit for the application’. PES General Meeting, 2003, vol. 3, p. 1847.
    38. 38)
      • 23. Wang, W., Barnes, M., Marjanovic, O.: ‘Droop control modelling and analysis of multi-terminal VSC-HVDC for offshore wind farms’. 10th IET Int. Conf. AC and DC Power Transmission (ACDC), 2012, pp. 16.
    39. 39)
      • 33. Dupraz, J.P., Penache, D.L.: ‘Development of a 120 kV direct current circuit breaker’. Presented at the Cigre Paris, 2014.
    40. 40)
      • 28. Mohammadi, M., Avendano-Mora, M., Barnes, M., et al: ‘A study on fault ride-through of VSC-connected offshore wind farms’. PES General Meeting, 2013, pp. 15.
    41. 41)
      • 6. Jovcic, D., Van Hertem, D., Linden, K., et al: ‘Feasibility of DC transmission networks’. 2nd IEEE PES Int. Conf. Exhibition on Innovative Smart Grid Technologies (ISGT Europe), 2011, pp. 18.
    42. 42)
      • 7. De Kerf, K., Srivastava, K., Reza, M., et al: ‘Wavelet-based protection strategy for DC faults in multi-terminal VSC HVDC systems’, IET Gener. Transm. Distrib., 2011, 5, pp. 496503.
http://iet.metastore.ingenta.com/content/journals/10.1049/hve.2017.0024
Loading

Related content

content/journals/10.1049/hve.2017.0024
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address