access icon openaccess Shunt active DC filter based on intelligence controller for HVDC link

A shunt active DC filter (ADF) with current injection suppresses current harmonics from high-voltage DC (HVDC) transmission systems. This paper proposes an ADF based on artificial neural networks (ANNs). The ANNs are very generic, accurate and convenient statistical models. They can emulate numerical model components, which are of complicated non-linear input/output relationships. The neural network in the control system of the ADF estimates the harmonic components of the load current and voltage. The ANN is trained offline using databases from the conventional controller. The simulation is carried out by MATLAB/Simulink and its results confirm that the proposed controller can offer better performance such as suppression of the current variations (current harmonics) in the DC-transmission line.

Inspec keywords: power filters; neurocontrollers; power transmission control; harmonics suppression; HVDC power transmission; active filters

Other keywords: current injection; load voltage; statistical models; nonlinear input-output relationships; DC-transmission line; conventional controller; load current; HVDC link; ANN; shunt active DC filter; databases; MATLAB-Simulink; artificial neural networks; current harmonics suppression; intelligence controller; numerical model components

Subjects: Control of electric power systems; Neurocontrol; Other power apparatus and electric machines; d.c. transmission

References

    1. 1)
      • 12. Zhuoyao, T., Zhen, R., Yingjun, D., et al: ‘Active DC filter for harmonics suppression and regulating load of passive filters on the DC-side of Gezhouba converter station’. Proc. Int. Conf. Power System Technology, 1998, pp. 15601564.
    2. 2)
      • 2. Gyugyi, L.: ‘Solid-state control of electric power in ac transmission systems’. Proc. Int. Symp. Electric Energy Converters, Capri, Italy, 1989.
    3. 3)
      • 26. Bose, B.K.: ‘Power electronics and motor drives’ (Elsevier Inc., 2006).
    4. 4)
      • 17. Demuth, H., Beale, M., Hagan, M.: ‘Neural network toolbox™ 6 user's guide’ (The MathWorks, Inc., 1992–2008).
    5. 5)
      • 1. Sood, V.K.: ‘HVDC and FACTS controllers application of static converters in power systems’ (Kluwer Academic Publishers, Boston, 2004).
    6. 6)
      • 21. Mehmet, T., Ahmet, T., Lütfü, S.: ‘Artificial neural network-based discrete-fuzzy logic controlled active power filter’, IET Power Electron., 2014, 7, (6), pp. 15361546.
    7. 7)
      • 10. Yousef, P., Balarko, C., Tim, C.G.: ‘Control coordination within a VSC HVDC link for power oscillation damping: a robust decentralized approach using homotopy’, IEEE Trans. Control Syst. Technol., 2013, 21, (4), pp. 1270-1279.
    8. 8)
      • 27. Hatti, M., Tioursi, M., Nouibat, W.: ‘A Q-Newton method neural network model for PEM fuel cells’. 4th IEEE Int. Conf. on Industrial Informatics (INDIN), August 2006.
    9. 9)
      • 22. Abdeslam, D.O., Wira, P., Mercklé, J., et al: ‘A unified artificial neural network architecture for active power filters’, IEEE Trans. Ind. Electron., 2007, 54, (1), pp. 61-76.
    10. 10)
      • 8. Dum, C.: ‘VSC-HVDC for industrial power systems’. Thesis for the degree of Doctor of Philosophy, Chalmers University of Technology, Goteborg, Sweden, 2007.
    11. 11)
      • 25. Haykin, S.: ‘Neural networks: a comprehensive foundation’ (Macmillan College Publishing Company, New York, USA, 1994).
    12. 12)
      • 7. Arrillaga, J., Liu, Y.H., Watson, N.R.: ‘Flexible power transmission – the HVDC options’ (John Wiley & Sons Ltd, Chichester, England, 2007).
    13. 13)
      • 13. Xiao, L.J., Zhang, L.: ‘Harmonic cancellation for HVDC systems using a notch-filter controlled active DC filter’. Proc. Inst. Electr. Eng., Gener. Transm. Distrib., 2000, 147, (3), pp. 176181.
    14. 14)
      • 14. Hao, P., Zanji, W., Jianye, C.: ‘Study on the control of shunt active DC Filter for HVDC systems’, IEEE Trans. Power Deliv., 2008, 23, (1), pp. 396-401.
    15. 15)
      • 24. Aali, S., Nazarpour, D.: ‘Voltage quality improvement with neural network-based interline dynamic voltage restore’, J. Electr. Eng. Technol., 2011, 6, (6), pp. 769775.
    16. 16)
      • 6. Paice, D.A.: ‘Power electronic converter harmonics (multi-pulse methods for clean power)’ (IEEE Press, New York, NY, 1996).
    17. 17)
      • 20. Aali, S.: ‘Unified power quality conditioner based on neural-network controller for mitigation of voltage and current source harmonics’, J. Electr. Eng.., 2014, 14, (2).
    18. 18)
      • 5. Mohan, N., Undeland, T.M., Robbins, W.P.: ‘Power electronics: converters, applications and design’ (John Wiley & Sons, New York, NY, 1995, 2nd edn,).
    19. 19)
      • 4. Hingorani, N.G., Gyugyi, L.: ‘Understanding FACTS: concepts and technology of flexible AC transmission systems’ (Wiley-IEEE Press, New York, 1999).
    20. 20)
      • 23. Kinhal, V.G., Agarwal, P., Gupta, H.O.: ‘Performance investigation of neural-network-based unified power-quality conditioner’, IEEE Trans. Power Deliv., 2011, 26, (1), pp. 431-437.
    21. 21)
      • 18. Mohammed, Q., Parag, K, Vinod, K.: ‘Artificial-neural-network-based phase-locking scheme for active power filters’, IEEE Trans. Ind. Electron., 2014, 61, (8), 2014, pp. 38573866.
    22. 22)
      • 9. Jowder, F.A.R., Ooi, B.T.: ‘VSC-HVDC station with SSSC characteristics’, IEEE Trans. Power Electron., 2004, 19, (4), pp. 1053-1059.
    23. 23)
      • 11. Seifossadat, G., Shoulaiem, A.: ‘A linearised small-signal model of an HVDC converter for harmonic calculation’, Electr. Power Syst. Res., 2006, 76, (6-7), pp. 567581.
    24. 24)
      • 19. Temurtas, F., Gunturkun, R., Yumusak, N., et al: ‘Harmonic detection using feed forward and recurrent neural networks for active filters’, Electr. Power Syst. Res., 2004, 72, (1), pp. 3340.
    25. 25)
      • 16. Cirstea, M.N., Dinu, A., Khor, J.G., et al: ‘Neural and fuzzy logic control of drives and power systems’ (Newnes Publications, Typeset at Replika Press Pvt Ltd, Delhi, India, 2002).
    26. 26)
      • 3. CIGRÉ WG: ‘Active filters in HVDC applications’, Technical Brochure No. 223, April 2003.
    27. 27)
      • 15. Zhang, H., Liu, D.: ‘Fuzzy modeling and fuzzy control’ (Birkhauser Boston, 2006).
http://iet.metastore.ingenta.com/content/journals/10.1049/hve.2016.0026
Loading

Related content

content/journals/10.1049/hve.2016.0026
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading