Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Numerical study on propagation mechanism and bio-medicine applications of plasma jet

In this study, the propagation mechanism of plasma jet and some bio-medical applications are investigated by two-dimensional numerical model. The key equations of plasma physics and chemistry related with plasma jet are firstly introduced. The simulation results suggest that the sheath forms near the dielectric tube inner surface, which results in the plasma channel to shrink in the radial direction inside the dielectric tube. The photoionisation of air species plays a crucial role in the transition from the localised discharge to streamer. The Penning ionisation increases the electric conductivity of the plasma channel and facilitates the formation of ring-shaped plasma bullet. For the plasma jet in the open air, electron-impact dissociation of H2O, electron neutralisation of H2O+, as well as dissociation of H2O by O(1D) are found to be the main reactions to produce OH. For micro plasma jet, the higher ignition voltage as the tube diameter decreased is attributed to the deceasing pre-avalanche electron density inside the tube. The simulation of plasma treatment of bacteria biofilm indicates that the mean free path of charged species in µm scale permitted the plasma penetrate into the cavity of the biofilm, and the structure of the biofilm results in the non-uniform distribution of ROS and RNS. The simulation of plasma treatment of cells immersed in liquid suggests that the HO2 generated by plasma aqueous species is the only way for superoxide to penetrate cell membrane and damage cytosolic fumarase B.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
      • 23. Niemira, B.A., Sites, J.: ‘Cold plasma inactivates Salmonella Stanley and Escherichia coli O157:H7 inoculated on golden delicious apples’, J. Food Prot., 2008.
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
      • 26. Lu, X.-P.: ‘Plasma jets and their biomedical application’, High Volt. Eng., 2011, 37, pp. 14161425.
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
      • 31. Shi, X.-M., Zhang, G.-J., Xu, G.-M., et al: ‘Inactivating bacterial endotoxin using low-temperature plasma’, High Volt. Eng., 2009, 35, pp. 2225.
    25. 25)
      • 39. Zhelezniak, M.B., Mnatsakanian, A.K., Sizykh, S.V.: ‘Photoionization of nitrogen and oxygen mixtures by radiation from a gas discharge’, High Temp. Sci., 1982, 20, pp. 423428.
    26. 26)
      • 40. Liu, X.Y., He, M.B., Liu, D.W.: ‘The effect of working gas impurities on plasma jets’, Phys. Plasmas 1994-Present, 2015, 22, p. 043513.
    27. 27)
      • 4. Xian, Y., Lu, X.: ‘Propagation of atmospheric-pressure cold plasma jets’, High Volt. Eng., 2012, 38, pp. 16671676.
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
    35. 35)
      • 49. Hu, J.T., et al: ‘Effect of a floating electrode on a plasma jet’, Phys. Plasmas 1994-Present, 2013, 20, p. 083516.
    36. 36)
      • 32. Ma, Y., Zhang, G.-J., Shi, X.-M., et al: ‘Bacteria inactivation mechanisms by dielectric barrier discharge’, High Volt. Eng., 2008, 34, pp. 363367.
    37. 37)
    38. 38)
    39. 39)
      • 11. Wang, H., Li, J.: ‘Effect of OH in pulsed discharge plasma system for wastewater treatment’, High Volt. Eng., 2013, 39, pp. 16981702.
    40. 40)
    41. 41)
      • 10. Wu, S., Nie, L., Lu, X.: ‘Atmospheric-pressure non-equilibrium plasma jets’, High Volt. Eng., 2015, 41, pp. 26022624.
    42. 42)
      • 13. Liu, J., Fang, Z., Zhou, Y.: ‘Effects of inner electrode diameter on discharge characteristics of atmosphere pressure plasma jet in air’, High Volt. Eng., 2014, 40, pp. 12141221.
    43. 43)
    44. 44)
      • 12. Fang, Z., Jin, J., Zhang, J., et al: ‘Characteristics of atmospheric pressure Ar/H2O plasma jet discharge’, High Volt. Eng., 2014, 40, pp. 20492056.
    45. 45)
    46. 46)
    47. 47)
      • 34. Jia, J., Liu, K., Zhu, Y., et al: ‘Sterilization by non-thermal plasma at an atmospheric pressure’, High Volt. Eng., 2007, 33, pp. 116119.
    48. 48)
    49. 49)
      • 50. Gas Discharge Physics | Yuri P. Raizer | Springer.
    50. 50)
    51. 51)
    52. 52)
    53. 53)
      • 33. Wang, S.-M., Zhang, G.-X., Xie, Y.-F., et al: ‘Sterilization of Escherichia coli with two atmospheric pressure plasmas’, High Volt. Eng., 2009, 35, pp. 4247.
    54. 54)
      • 35. Kong, M.G., Liu, D.: ‘Researches on the interaction between gas plasmas and aqueous solutions: significance, challenges and new progresses’, High Volt. Eng., 2014, 40, pp. 29562965.
    55. 55)
      • 27. Hamaguchi, S.: ‘Chemically reactive species in liquids generated by atmospheric-pressure plasmas and their roles in plasma medicine’. AIP Conf. Proc., 2013, vol. 1545, pp. 214222.
    56. 56)
      • 24. Perni, S., Liu, D.W., Shama, G., et al: ‘Cold atmospheric plasma decontamination of the pericarps of fruit’, J. Food Prot., 2008, 71, pp. 302308.
http://iet.metastore.ingenta.com/content/journals/10.1049/hve.2016.0023
Loading

Related content

content/journals/10.1049/hve.2016.0023
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address