http://iet.metastore.ingenta.com
1887

access icon openaccess Scope of physiological and behavioural pain assessment techniques in children – a review

  • PDF
    112.12109375Kb
  • HTML
    73.47265625Kb
  • XML
    78.8212890625Kb
Loading full text...

Full text loading...

/deliver/fulltext/htl/5/4/HTL.2017.0108.html;jsessionid=1k1673fni4mhb.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fhtl.2017.0108&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Rourke, D.O.: ‘The measurement of pain in infants, children, and adolescents: from policy to practice’, J. Am. Phys. Ther. Assoc., 2004, 84, pp. 560570.
    2. 2)
    3. 3)
      • 3. McGrath, P.J., Unruh, A.M.: ‘Measurement and assessment of paediatric pain’ in Wall, P.D., Melzack, R. (Eds.): ‘Textbook of pain’ (Churchill Livingstone, Edinburgh, Scotland, 1999, 4th edn.), pp. 371384..
    4. 4)
      • 4. Sweet, S.D., McGrath, P.J.: ‘Physiological measures of pain’ in ‘Measurement of pain in infants and children’ (IASP Press, Seattle, WA, USA, 1998, 2nd edn.), pp. 5981.
    5. 5)
      • 5. Ekman, P., Friesen, W.V., Hager, J.C.: ‘Facial action coding system investigator's guide’ (Consultant Pschologists Press, Salt Lake City, UT, 2002).
    6. 6)
      • 6. de Jesus, J.A.L., Tristao, R.M., Storm, H., et al: ‘Heart rate, oxygen saturation, and skin conductance: a comparison study of acute pain in Brazilian newborns’, Conf. Proc. IEEE. Eng. Med. Biol. Soc., 2011, 2011, pp. 18751879.
    7. 7)
      • 7. McGrath, P.A., Gillespie, J.: ‘Pain assessment in children and adolescents’, in Turk, D.C., Melzack, R. (Eds.): ‘Handbook of pain assessment’ (Guildford Press, New York, NY, USA, 2001), no. 2, pp. 97118.
    8. 8)
      • 8. Champion, G.D., Good enough, B., von Baeyer, C., et al: ‘Measurement of pain by self-report’ in Finley, G., McGrath, P. (Eds.): ‘Measurement of pain in infants and children’ (IASP Press, Seattle, WA, USA, 1998), pp. 123160.
    9. 9)
    10. 10)
    11. 11)
      • 11. McGrath, P.J., Johnson, G., Goodman, J.T., et al: ‘CHEOPS: a behavioural scale for rating postoperative pain in children’ inFields, H.L., Dubner, R., Cervero, F. (Eds.): ‘Proceedings of the fourth world congress on pain, advances in pain research and therapy’, vol. 9 (Raven Press, New York, NY, 1985), pp. 395401.
    12. 12)
    13. 13)
      • 13. Cohn, J.F., Ambadar, Z., Ekman, P.: ‘Observer-based measurement of facial expression with the facial action coding system’ in ‘Handbook of emotion elicitation and assessment’ (2005), pp. 203221.
    14. 14)
      • 14. Del Bene, V.E.: ‘Temperature’, in Walker, H.K., Wall, W.D., Hurst, J.W. (Eds.): ‘Clinical methods: the history, physical, and laboratory examinations’ (Butterworth-Heinemann Ltd, Boston, MA, USA, 1990, 3rd edn.), pp. 990993.
    15. 15)
    16. 16)
    17. 17)
    18. 18)
      • 18. Li, J., Poulton, G., Guo, Y., et al: ‘Face recognition based on multiple region features’. Proc. VIIth Digital Image Computing: Techniques and Applications, 2003, pp. 6978.
    19. 19)
      • 19. Kalita, J., Das, K.: ‘Recognition of facial expression using eigenvector based distributed features and Euclidean distance based decision making technique’, Int. J. Adv. Comput. Sci. Appl., 2013, 4, (2), pp. 196202.
    20. 20)
      • 20. Punitha, A., Kalaiselvigeetha, M.: ‘Texture based emotion recognition from facial expression using support vector machine’, Int. J. Comput. Appl., 2013, 80, (5), pp. 15.
    21. 21)
    22. 22)
      • 22. Patil, R.A., Sahula, V., Mandal, A.S.: ‘Facial expression recognition in image sequences using active shape model and support vector machine’. 2011 5th UKSim European Symp. on Computer Modeling and Simulation (EMS), 2011, pp. 168173.
    23. 23)
      • 23. Mansor, M.N., Syam, S.H.F., Rejab, M.N., et al: ‘AR model for infant pain anxiety recognition using fuzzy k-NN’. Proc. 2012 Int. Symp. on Instrumentation and Measurement, Sensor Network and Automation (IMSNA), 2012, vol. 2, no. 1, pp. 374376.
    24. 24)
      • 24. Yuan, L., Bao, F.S., Lu, G.: ‘Recognition of neonatal facial expressions of acute pain using boosted Gabor features’. Proc. Int. Conf. on Tools with Artificial Intelligence, ICTAI, 2008, vol. 2, pp. 473476.
    25. 25)
      • 25. Lu, G., Yuan, L., Li, X., et al: ‘Facial expression recognition of pain in neonates’. Proc. Int. Conf. on Computer Science Software Engineering (CSSE), 2008, vol. 1, pp. 756759.
    26. 26)
      • 26. Niu, Z., Qiu, X.: ‘Facial expression recognition based on weighted principal component analysis and support vector machines’. Third Int. Conf. on Advanced Computer Theory and Engineering (ICACTE), 2010, vol. 3, pp. 174178.
    27. 27)
      • 27. Naufal Mansor, M., Rejab, M.N.: ‘Infant pain recognition system with GLCM features and GANN under unstructured lighting condition’. Proc. 2013 IEEE Int. Conf. on Control System, Computing and Engineering (ICCSCE), 2013, pp. 243248.
    28. 28)
      • 28. Naufal Mansor, M., Rejab, M.N.: ‘Phase congruency image and sparse classifier for newborn classifying pain state’. Proc. 2013 IEEE Int. Conf. on Control System, Computing and Engineering (ICCSCE), 2013, pp. 450454.
    29. 29)
    30. 30)
      • 30. Zamzami, G., Ruiz, G., Goldgof, D., et al: ‘Pain assessment in infants: towards spotting pain expression based on infants’ facial strain’. 2015 11th IEEE Int. Conf. and Workshops on Automatic Face and Gesture Recognition (FG), 2015, vol. 5, pp. 15.
    31. 31)
    32. 32)
      • 32. Zhou, J., Hong, X.: ‘Recurrent convolutional neural network regression for continuous pain intensity estimation in video’. Proc. IEEE Computer Vision and Pattern Recognition (CVPR), 2015, pp. 111.
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
    38. 38)
    39. 39)
    40. 40)
    41. 41)
    42. 42)
    43. 43)
      • 43. Jang, E., Park, B., Kim, S., et al: ‘Classification of human emotions from physiological signals using machine learning algorithms: recognition of pain, boredom, and surprise emotions’. The Sixth Int. Conf. on Advances in Computer–Human Interactions (ACHI 2013), 2013, pp. 395400.
    44. 44)
      • 44. Lopez-Martinez, D., Picard, R.: ‘Multi-task neural networks for personalized pain recognition from physiological signals’. Seventh Int. Conf. on Affective Computing and Intelligent Interaction Workshops and Demos, 2017, pp. 36.
    45. 45)
      • 45. Hooshmand, H., Hashmi, M., Phillips, E.M.: ‘Infrared thermal imaging as a tool in pain management – an 11 year study, part I of II’, Thermol. Int., 2001, 11, pp. 5365.
    46. 46)
      • 46. Frize, M., Herry, C., Scales, N.: ‘Processing thermal images to detect breast cancer and assess pain’. Proc. IEEE/EMBS Region 8 Int. Conf. on Information Technology Applications in Biomedicine (ITAB), 2003, pp. 234237.
    47. 47)
      • 47. Merla, A., Ciuffolo, F., Attilio, M.D., et al: ‘Functional infrared imaging in the diagnosis of the myofascial pain’. Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society, 2004, vol. 2, pp. 11881191.
    48. 48)
      • 48. Bardhan, S., Bhowmik, M.K., Nath, S., et al: ‘A review on inflammatory pain detection in human body through infrared image analysis’. Int. Symp. on Advanced Computing and Communication (ISACC), 2015.
    49. 49)
      • 49. Irani, R., Nasrollahi, K., Simon, M.O., et al: ‘Spatiotemporal analysis of RGB-D-T facial images for multimodal pain level recognition’. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition Workshops, 2015, pp. 8896.
    50. 50)
      • 50. Kachele, M., Thiam, P., Amirian, M., et al: ‘Multimodal data fusion for person independent, continuous estimation of pain intensity’, Engineering Applications of Neural Networks (EANN), Rhodes, Greece, September 2015, pp. 275285.
    51. 51)
      • 51. Walter, S., Gruss, S., Ehleiter, H., et al: ‘The BioVid heat pain database: data for the advancement and systematic validation of an automated pain recognition’. 2013 IEEE Int. Conf. on Cybernetics (CYBCONF), June 2013, pp. 128131.
    52. 52)
      • 52. Zamzmi, G., Pai, C., Goldgof, D., et al: ‘An approach for automated multimodal analysis of infants’ pain’. 23rd Int. Conf. on Pattern Recognition (ICPR), 2016, pp. 41434148.
    53. 53)
      • 53. Petroni, M., Malowany, A.S., Johnston, C.C., et al: ‘Classification of infant cry vocalizations using artificial neural networks (ANNs)’. Int. Conf. on Acoustics, Speech, and Signal Processing, ICASSP, 1995, pp. 34753478.
    54. 54)
      • 54. Lucey, P., Cohn, J.F., Prkachin, K.M., et al: ‘Painful data: the UNBC-McMaster shoulder pain expression archive database’. 2011 IEEE Int. Conf. on Automatic Face & Gesture Recognition and Workshops (FG 2011), 2011, pp. 5764.
http://iet.metastore.ingenta.com/content/journals/10.1049/htl.2017.0108
Loading

Related content

content/journals/10.1049/htl.2017.0108
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address