http://iet.metastore.ingenta.com
1887

access icon openaccess Are ultra-short heart rate variability features good surrogates of short-term ones? State-of-the-art review and recommendations

  • PDF
    292.7255859375Kb
  • XML
    92.9375Kb
  • HTML
    68.9228515625Kb
Loading full text...

Full text loading...

/deliver/fulltext/htl/5/3/HTL.2017.0090.html;jsessionid=1kt1wdqm2bbug.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fhtl.2017.0090&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Fenici, R., Brisinda, D., Sorbo, A.R.: ‘Methods for real-time assessment of operational stress during realistic police tactical training’ in Kitaeff, J. (Ed.): ‘Handbook of police psychology’ (Routledge, New York, 2011), pp. 295319.
    2. 2)
    3. 3)
    4. 4)
      • 4. Morelli, D., Bartoloni, L., Colombo, M., et al: ‘Profiling the propagation of error from PPG to HRV features in a wearable physiological-monitoring device’, Healthc. Technol. Lett., 2017, pp. 16, doi: 10.1049/htl.2017.0039.
    5. 5)
    6. 6)
    7. 7)
    8. 8)
      • 8. Massaro, S., Pecchia, L.: ‘Heart rate variability (HRV) analysis: a methodology for organizational neuroscience’, Org. Res. Methods, 2016, doi: 10.1177/1094428116681072.
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
      • 14. Boonnithi, S., Phongsuphap, S.: ‘Comparison of heart rate variability measures for mental stress detection’, Comput. Cardiol., 2011, 2011, pp. 8588.
    15. 15)
    16. 16)
      • 16. Mayya, S., Jilla, V., Tiwari, V.N., et al: ‘Continuous monitoring of stress on smartphone using heart rate variability’. 2015 IEEE 15th Int. Conf. on Bioinformatics and Bioengineering (BIBE), Belgrade, Serbia, November 2015, pp. 15.
    17. 17)
    18. 18)
      • 18. Wijsman, J., Grundlehner, B., Liu, H., et al: ‘Towards mental stress detection using wearable physiological sensors’. 2011 Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society, EMBC, Boston, MA, USA, 30 August–3 September 2011, pp. 17981801.
    19. 19)
      • 19. Kim, D., Seo, Y., Cho, J., et al: ‘Detection of subjects with higher self-reporting stress scores using heart rate variability patterns during the day’. 30th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society, 2008. EMBS 2008, Vancouver, BC, Canada, August 2008, pp. 682685.
    20. 20)
      • 20. Salahuddin, L., Cho, J., Jeong, M.G., et al: ‘Ultra short term analysis of heart rate variability for monitoring mental stress in mobile settings’. Conf. Proc. IEEE Eng. Medicine Biology Society, Lyon, France, August 2007, pp. 46564659.
    21. 21)
    22. 22)
    23. 23)
      • 23. Sun, F.-T., Kuo, C., Cheng, H.-T., et al: ‘Activity-aware mental stress detection using physiological sensors’. Int. Conf. on Mobile Computing, Applications, and Services, Santa Clara, CA, USA, October 2010, pp. 211230.
    24. 24)
    25. 25)
    26. 26)
      • 26. Choi, J., Gutierrez-Osuna, R.: ‘Using heart rate monitors to detect mental stress’. Sixth Int. Workshop on Wearable and Implantable Body Sensor Networks, 2009. BSN 2009, Berkeley, CA, USA, June 2009, pp. 219223.
    27. 27)
    28. 28)
    29. 29)
    30. 30)
      • 30. Esco, M.R., Flatt, A.A.: ‘Ultra-short-term heart rate variability indexes at rest and post-exercise in athletes: evaluating the agreement with accepted recommendations’, J. Sports Sci. Med., 2014, 13, pp. 535541.
    31. 31)
    32. 32)
      • 32. Thong, T., Li, K., McNames, J., et al: ‘Accuracy of ultra-short heart rate variability measures’. Proc. 25th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society, 2003, Cancun, Mexico, September 2003, pp. 24242427.
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
    38. 38)
    39. 39)
    40. 40)
      • 40. Arza, A., Garzón, J., Hemando, A., et al: ‘Towards an objective measurement of emotional stress: preliminary analysis based on heart rate variability’. 2015 37th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, August 2015, pp. 33313334.
    41. 41)
      • 41. Salahuddin, L., Jeong, M.G., Kim, D.: ‘Ultra short term analysis of heart rate variability using normal sinus rhythm and atrial fibrillation ECG data’. 2007 9th Int. Conf. on e-Health Networking, Application and Services, 2007, pp. 240243.
    42. 42)
    43. 43)
      • 43. Benjamini, Y., Hochberg, Y.: ‘Controlling the false discovery rate: a practical and powerful approach to multiple testing’, J. R. Stat. Soc. B, Methodol., 1995, 57, (1), pp. 289300.
    44. 44)
      • 44. Vidakovic, B.: ‘Statistics for bioengineering sciences: with MATLAB and WinBUGS support’ (Springer Science & Business Media, New York, NY, USA, 2011).
    45. 45)
      • 45. Dewitte, K., Fierens, C., Stöckl, D., et al: ‘Application of the Bland–Altman plot for interpretation of method-comparison studies: a critical investigation of its practice’, Clin. Chem., 2002, 48, pp. 799801.
    46. 46)
    47. 47)
      • 47. Macbeth, G., Razumiejczyk, E., Ledesma, R.D.: ‘Cliff's delta calculator: a non-parametric effect size program for two groups of observations’, Universitas Psychol., 2011, 10, pp. 545555.
    48. 48)
      • 48. Li, Z., Chines, A., Meredith, M.: ‘Statistical validation of surrogate endpoints: is bone density a valid surrogate for fracture?’, J. Musculoskeletal Neuronal Interact., 2004, 4, p. 64.
http://iet.metastore.ingenta.com/content/journals/10.1049/htl.2017.0090
Loading

Related content

content/journals/10.1049/htl.2017.0090
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address