http://iet.metastore.ingenta.com
1887

access icon openaccess Can surgical simulation be used to train detection and classification of neural networks?

  • PDF
    493.3916015625Kb
  • XML
    85.50390625Kb
  • HTML
    88.9306640625Kb
Loading full text...

Full text loading...

/deliver/fulltext/htl/4/5/HTL.2017.0064.html;jsessionid=u2ixe7gpwppd.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fhtl.2017.0064&mimeType=html&fmt=ahah

References

    1. 1)
      • L. Maier-Hein , S. Vedula , S. Speidel .
        1. Maier-Hein, L., Vedula, S., Speidel, S., et al: ‘Surgical data science: enabling next-generation surgery’, arXiv:1701.06482, 2017.
        .
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
      • D. Katić , A.L. Wekerle , F. Gärtner .
        6. Katić, D., Wekerle, A.L., Gärtner, F., et al: ‘Knowledge-driven formalization of laparoscopic surgeries for rule-based intraoperative context-aware assistance’. Information Processing in Computer-Assisted Interventions (IPCAI), 2014 (LNCS, 8498), pp. 158167.
        . Information Processing in Computer-Assisted Interventions (IPCAI) , 158 - 167
    7. 7)
    8. 8)
      • N. Rieke , D.J. Tan , M. Alsheakhali .
        8. Rieke, N., Tan, D.J., Alsheakhali, M., et al: ‘Surgical tool tracking and pose estimation in retinal microsurgery’. Medical Image Computing and Computer-Assisted Intervention, 2015 (LNCS, 9349), pp. 266273.
        . Medical Image Computing and Computer-Assisted Intervention , 266 - 273
    9. 9)
    10. 10)
      • R. DiPietro , C. Lea , A. Malpani .
        10. DiPietro, R., Lea, C., Malpani, A., et al: ‘Recognizing surgical activities with recurrent neural networks’, Medical Image Computing and Computer-Assisted Intervention, 2016 (LNCS, 9900), pp. 551558.
        . Medical Image Computing and Computer-Assisted Intervention , 551 - 558
    11. 11)
      • H.C. Lin , I. Shafran , T.E. Murphy .
        11. Lin, H.C., Shafran, I., Murphy, T.E., et al: ‘Automatic detection and segmentation of robot-assisted surgical motions’, Med. Image Comput. Comput. Assist. Interv., 2005, 8, (Pt 1), pp. 802810.
        . Med. Image Comput. Comput. Assist. Interv. , 802 - 810
    12. 12)
    13. 13)
      • A. Krizhevsky , I. Sutskever , G.E. Hinton .
        13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ‘Imagenet classification with deep convolutional neural networks’. Advances in Neural Information Processing Systems (NIPS), 2012, pp. 10971105.
        . Advances in Neural Information Processing Systems (NIPS) , 1097 - 1105
    14. 14)
      • J. Long , E. Shelhamer , T. Darrell .
        14. Long, J., Shelhamer, E., Darrell, T.: ‘Fully convolutional networks for semantic segmentation’. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Boston, October 2015, pp. 34313440.
        . IEEE Conf. Computer Vision and Pattern Recognition (CVPR) , 3431 - 3440
    15. 15)
    16. 16)
      • R. Girshick , J. Donahue , T. Darrell .
        16. Girshick, R., Donahue, J., Darrell, T., et al: ‘Rich feature hierarchies for accurate object detection and semantic segmentation’. IEEE Computer Society Conf. Computer Vision and Pattern Recognition (CVPR), Columbus, June 2014, pp. 580587.
        . IEEE Computer Society Conf. Computer Vision and Pattern Recognition (CVPR) , 580 - 587
    17. 17)
    18. 18)
      • P. Isola , J.-Y. Zhu , T. Zhou .
        18. Isola, P., Zhu, J.-Y., Zhou, T., et al: ‘Image-to-image translation with conditional adversarial networks’. IEEE Computer Society Conf. Computer Vision and Pattern Recognition (CVPR), Hawaii, July 2017.
        . IEEE Computer Society Conf. Computer Vision and Pattern Recognition (CVPR)
    19. 19)
    20. 20)
      • K. Simonyan , A. Zisserman .
        20. Simonyan, K., Zisserman, A.: ‘Very deep convolutional networks for large-scale image recognition’. Int. Conf. Learning Representations (ICRL), San Diego, May 2015, pp. 114.
        . Int. Conf. Learning Representations (ICRL) , 1 - 14
    21. 21)
    22. 22)
      • Y. Jia , E. Shelhamer , J. Donahue .
        22. Jia, Y., Shelhamer, E., Donahue, J., et al: ‘Caffe: convolutional architecture for fast feature embedding’. Proc. ACM Int. Conf. Multimedia (ACM), Orlando, November 2014, pp. 675678.
        . Proc. ACM Int. Conf. Multimedia (ACM) , 675 - 678
    23. 23)
      • D. Eigen , R. Fergus .
        23. Eigen, D., Fergus, R.: ‘Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture’. Proc. Int. Conf. Computer Vision (ICCV), Santiago, December 2015, pp. 26502658.
        . Proc. Int. Conf. Computer Vision (ICCV) , 2650 - 2658
    24. 24)
http://iet.metastore.ingenta.com/content/journals/10.1049/htl.2017.0064
Loading

Supplementary material

Related content

content/journals/10.1049/htl.2017.0064
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address