http://iet.metastore.ingenta.com
1887

access icon openaccess Using brain connectivity metrics from synchrostates to perform motor imagery classification in EEG-based BCI systems

  • XML
    55.3359375Kb
  • PDF
    660.5302734375Kb
  • HTML
    58.5654296875Kb
Loading full text...

Full text loading...

/deliver/fulltext/htl/5/3/HTL.2017.0049.html;jsessionid=3hjd60supw5re.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fhtl.2017.0049&mimeType=html&fmt=ahah

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
      • W. Jamal , S. Das , K. Maharatna .
        4. Jamal, W., Das, S., Maharatna, K., et al: ‘On the existence of synchrostates in multichannel EEG signals during face-perception tasks’, Phys. Eng. Express, 2015, 1, (1), pp. 130.
        . Phys. Eng. Express , 1 , 1 - 30
    5. 5)
    6. 6)
      • C. Park , D. Looney , A. Ahrabian .
        6. Park, C., Looney, D., Ahrabian, A., et al: ‘Classification of motor imagery BCI using multivariate empirical mode decomposition’, 2013, 21, (1), pp. 1022.
        . , 1 , 10 - 22
    7. 7)
      • B. Perseh , A.R. Sharafat .
        7. Perseh, B., Sharafat, A.R.: ‘An efficient P300-based BCI using wavelet features and IBPSO-based channel selection’, J. Med. Signals Sens., 2012, 2, (3), pp. 128143.
        . J. Med. Signals Sens. , 3 , 128 - 143
    8. 8)
    9. 9)
      • L. Santamaria , C. James .
        9. Santamaria, L., James, C.: ‘Use of graph metrics to classify motor imagery based BCI’. 2016 Int. Conf. for Students on Applied Engineering (ISCAE), 2016, pp. 469474.
        . 2016 Int. Conf. for Students on Applied Engineering (ISCAE) , 469 - 474
    10. 10)
      • L. Santamaria , C. James .
        10. Santamaria, L., James, C.: ‘Classification in emotional BCI using phase information from the EEG’. Proc. Annual Int. Conf. IEEE Engineering in Medicine and Biology Society, 2016, pp. 371374.
        . Proc. Annual Int. Conf. IEEE Engineering in Medicine and Biology Society , 371 - 374
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
      • M. Hassan , M. Shamas , M. Khalil .
        15. Hassan, M., Shamas, M., Khalil, M., et al: ‘EEGNET: An open source tool for analyzing and visualizing M/EEG connectome’, PLoS One, 2015, 10, p. 9.
        . PLoS One , 9
    16. 16)
      • J.D. Kropotov . (2009)
        16. Kropotov, J.D.: ‘Quantitative EEG, event-related potentials and neurotherapy’ (Academic Press, San Diego, CA, USA, 2009, 1st edn.).
        .
    17. 17)
      • S. Rogers , M. Girolami . (2011)
        17. Rogers, S., Girolami, M.: ‘A first course in machine learning’, Finance (Chapman & Hall/CRC, Boca Raton, FL, USA, 2011), p. 427.
        .
    18. 18)
      • T. Rahman , A.K. Ghosh , M.H. Shuvo .
        18. Rahman, T., Ghosh, A.K., Shuvo, M.H., et al: ‘Mental stress recognition using K-nearest neighbor (KNN) classifier on EEG signals’. Int. Conf. Materials, Electronics & Information Engineering (ICMEIE), 2015, pp. 14.
        . Int. Conf. Materials, Electronics & Information Engineering (ICMEIE) , 1 - 4
    19. 19)
      • F. Van der Heijden , R.P.W. Duin , D. de Ridder . (2004)
        19. Van der Heijden, F., Duin, R.P.W., de Ridder, D., et al: ‘Classification, parameter estimation and state estimation’ (Wiley, Chichester, UK, 2004, 1st edn.).
        .
    20. 20)
    21. 21)
      • I.H. Witten , E. Frank , M.A. Hall . (2011)
        21. Witten, I.H., Frank, E., Hall, M.A.: ‘Data mining: practical techniques management’ (Morgan Kaufmann Publishers, San Francisco, CA, USA, 2011, 3rd edn.).
        .
    22. 22)
    23. 23)
http://iet.metastore.ingenta.com/content/journals/10.1049/htl.2017.0049
Loading

Related content

content/journals/10.1049/htl.2017.0049
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address