http://iet.metastore.ingenta.com
1887

access icon openaccess Using brain connectivity metrics from synchrostates to perform motor imagery classification in EEG-based BCI systems

  • XML
    55.3359375Kb
  • PDF
    660.5302734375Kb
  • HTML
    58.5654296875Kb
Loading full text...

Full text loading...

/deliver/fulltext/htl/5/3/HTL.2017.0049.html;jsessionid=74ebhgvdx42f.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fhtl.2017.0049&mimeType=html&fmt=ahah

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
      • 4. Jamal, W., Das, S., Maharatna, K., et al: ‘On the existence of synchrostates in multichannel EEG signals during face-perception tasks’, Phys. Eng. Express, 2015, 1, (1), pp. 130.
    5. 5)
    6. 6)
      • 6. Park, C., Looney, D., Ahrabian, A., et al: ‘Classification of motor imagery BCI using multivariate empirical mode decomposition’, 2013, 21, (1), pp. 1022.
    7. 7)
      • 7. Perseh, B., Sharafat, A.R.: ‘An efficient P300-based BCI using wavelet features and IBPSO-based channel selection’, J. Med. Signals Sens., 2012, 2, (3), pp. 128143.
    8. 8)
    9. 9)
      • 9. Santamaria, L., James, C.: ‘Use of graph metrics to classify motor imagery based BCI’. 2016 Int. Conf. for Students on Applied Engineering (ISCAE), 2016, pp. 469474.
    10. 10)
      • 10. Santamaria, L., James, C.: ‘Classification in emotional BCI using phase information from the EEG’. Proc. Annual Int. Conf. IEEE Engineering in Medicine and Biology Society, 2016, pp. 371374.
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
      • 15. Hassan, M., Shamas, M., Khalil, M., et al: ‘EEGNET: An open source tool for analyzing and visualizing M/EEG connectome’, PLoS One, 2015, 10, p. 9.
    16. 16)
      • 16. Kropotov, J.D.: ‘Quantitative EEG, event-related potentials and neurotherapy’ (Academic Press, San Diego, CA, USA, 2009, 1st edn.).
    17. 17)
      • 17. Rogers, S., Girolami, M.: ‘A first course in machine learning’, Finance (Chapman & Hall/CRC, Boca Raton, FL, USA, 2011), p. 427.
    18. 18)
      • 18. Rahman, T., Ghosh, A.K., Shuvo, M.H., et al: ‘Mental stress recognition using K-nearest neighbor (KNN) classifier on EEG signals’. Int. Conf. Materials, Electronics & Information Engineering (ICMEIE), 2015, pp. 14.
    19. 19)
      • 19. Van der Heijden, F., Duin, R.P.W., de Ridder, D., et al: ‘Classification, parameter estimation and state estimation’ (Wiley, Chichester, UK, 2004, 1st edn.).
    20. 20)
    21. 21)
      • 21. Witten, I.H., Frank, E., Hall, M.A.: ‘Data mining: practical techniques management’ (Morgan Kaufmann Publishers, San Francisco, CA, USA, 2011, 3rd edn.).
    22. 22)
    23. 23)
http://iet.metastore.ingenta.com/content/journals/10.1049/htl.2017.0049
Loading

Related content

content/journals/10.1049/htl.2017.0049
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address