http://iet.metastore.ingenta.com
1887

access icon openaccess Cloud-based adaptive exon prediction for DNA analysis

  • HTML
    72.2626953125Kb
  • PDF
    409.822265625Kb
  • XML
    75.2236328125Kb
Loading full text...

Full text loading...

/deliver/fulltext/htl/5/1/HTL.2017.0032.html;jsessionid=ai3knripken3.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fhtl.2017.0032&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Kathleen, C., Nocle, P., Maria Kmoppers, B.: ‘The adoption of cloud computing in the field of genomics research: the influence of ethical and legal issues’, PLoS One, 2016, 11, (10), pp. 133.
    2. 2)
      • 2. Lincoln Stein, D.: ‘The case for cloud computing in genome informatics’, Genome Biol., 2010, 11:207, (5), pp. 17.
    3. 3)
    4. 4)
      • 4. Min, L., Qi, L., Gamage Upeksha, G., et al: ‘Prioritization of orphan disease-causing genes using topological feature and go similarity between proteins in interaction networks’, Sci. China Life Sci., 2014, 57, (2014), pp. 10641071.
    5. 5)
      • 5. Inbamalar, T.M., Sivakumar, R.: ‘Study of DNA sequence analysis using DSP techniques’, J. Autom. Control Eng., 2013, 1, (2013), pp. 336342.
    6. 6)
    7. 7)
      • 7. Srinivasareddy, P., Zia Ur Rahman, M.: ‘New adaptive exon predictors for identifying protein coding regions in DNA sequence’, ARPN J. Eng. Appl. Sci., 2016, 11, (2016), pp. 1354013549.
    8. 8)
      • 8. Saberkari, H., Shamsi, M., Hamed, H., et al: ‘A novel fast algorithm for exon prediction in eukaryotes genes using linear predictive coding model and Goertzel algorithm based on the Z-curve’, Int. J. Comput. Appl., 2013, 67, (2013), pp. 2538.
    9. 9)
      • 9. Wazim Ismail, M., Yuzhen, Y., Haixu, T.: ‘Gene finding in metatranscriptomic sequences’, BMC Bioinf., 2014, 15, (2014), pp. 0108.
    10. 10)
      • 10. Ghorbani, M., Hamed, K.: ‘Bioinformatics approaches for gene finding’, Int. J. Sci. Res. Sci. Technol., 2015, 1, (2015), pp. 1215.
    11. 11)
      • 11. Devendra Kumar, S., Rajiv, S., Narayan Sharma, S.: ‘An adaptive window length strategy for eukaryotic CDS prediction’, IEEE/ACM Trans. Comput. Biol. Bioinf., 2013, 10, (2013), pp. 12411252.
    12. 12)
    13. 13)
      • 13. Guangchen, L., Yihui, L.: ‘Identification of protein coding regions in the eukaryotic DNA sequences based on Marple algorithm and wavelet packets transform’, Abs. Appl. Anal., 2014, 2014, (2014), pp. 114.
    14. 14)
      • 14. Simon Haykin, O.: ‘Adaptive filter theory’ (Pearson Education Ltd., Harlow, UK, 2014, 5th edn.), pp. 320380.
    15. 15)
      • 15. Zia Ur Rahman, M., Rafi Ahamed, S., Rama Koti Reddy, D.V.: ‘Efficient and simplified adaptive noise cancellers for ECG sensor based remote health monitoring’, IEEE Sens. J., 2011, 12, (2011), pp. 566573.
    16. 16)
      • 16. Nagesh, M., Prasad, S.V.A.V., Rahman, M.Z.: ‘Efficient cardiac signal enhancement techniques based on variable step size and data normalized hybrid signed adaptive algorithms’, Int. Rev. Comput. Softw., 2016, 11, (10), pp. 113.
    17. 17)
    18. 18)
    19. 19)
    20. 20)
      • 20. Paula Diniz, S.R.: ‘Adaptive filtering’, in Ramirez, P.S. (Ed.): ‘Algorithms and practical implementation’, vol. 3 (Springer Publishers, New York, NY, USA, 2014), pp. 137207.
    21. 21)
      • 21. National Center for Biotechnology Information. Available at www.ncbi.nlm.nih.gov/, accessed August 2016.
http://iet.metastore.ingenta.com/content/journals/10.1049/htl.2017.0032
Loading

Related content

content/journals/10.1049/htl.2017.0032
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address