http://iet.metastore.ingenta.com
1887

access icon openaccess Real-time eye tracking for the assessment of driver fatigue

  • HTML
    57.6142578125Kb
  • XML
    60.107421875Kb
  • PDF
    504.9267578125Kb
Loading full text...

Full text loading...

/deliver/fulltext/htl/5/2/HTL.2017.0020.html;jsessionid=fvp9oehaejlv.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fhtl.2017.0020&mimeType=html&fmt=ahah

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
      • V. Saini , R. Saini .
        4. Saini, V., Saini, R.: ‘Driver drowsiness detection system and techniques: a review’, Int. J. Comput. Sci. Inf. Technol., 2014, 5, (3), pp. 42454249.
        . Int. J. Comput. Sci. Inf. Technol. , 3 , 4245 - 4249
    5. 5)
      • D.H. Li , Q. Liu , W. Yuan .
        5. Li, D.H., Liu, Q., Yuan, W., et al: ‘Relationship between fatigue driving and traffic accident’, J. Traffic Transp. Eng., 2010, 2, pp. 104109.
        . J. Traffic Transp. Eng. , 104 - 109
    6. 6)
      • Q. Wang , J. Yang , M. Ren .
        6. Wang, Q., Yang, J., Ren, M.: ‘Driver fatigue detection: a survey’. The Sixth World Congress on IEEE Intelligent Control and Automation, Dalian, China, June 2006, vol. 2, pp. 85878591.
        . The Sixth World Congress on IEEE Intelligent Control and Automation , 8587 - 8591
    7. 7)
      • E. Schmidt , R. Decke , R. Rasshofer .
        7. Schmidt, E., Decke, R., Rasshofer, R.: ‘Correlation between subjective driver state measures and psychophysiological and vehicular data in simulated driving’. Intelligent Vehicles Symp., Gothenburg, Sweden, June 2016, pp. 13801385.
        . Intelligent Vehicles Symp. , 1380 - 1385
    8. 8)
    9. 9)
      • L. Lang , H. Qi .
        9. Lang, L., Qi, H.: ‘The study of driver fatigue monitor algorithm combined PERCLOS and AECS’. Int. Conf. on Computer Science and Software Engineering, 2008, pp. 349352.
        . Int. Conf. on Computer Science and Software Engineering , 349 - 352
    10. 10)
      • Y. Dong , Z. Hu , K. Uchimura .
        10. Dong, Y., Hu, Z., Uchimura, K., et al: ‘Driver inattention monitoring system for intelligent vehicles: a review’. Intelligent Vehicles Symp., 2009, pp. 875880.
        . Intelligent Vehicles Symp. , 875 - 880
    11. 11)
      • U. Trutschel , B. Sirois , D. Sommer .
        11. Trutschel, U., Sirois, B., Sommer, D., et al: ‘PERCLOS: an alertness measure of the past’. Driving Assessment 2011: 6th Int. Driving Symp. Human Factors in Driver Assessment, Training, and Vehicle Design, 2011.
        . Driving Assessment 2011: 6th Int. Driving Symp. Human Factors in Driver Assessment, Training, and Vehicle Design
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
      • V. Vapnik . (2006)
        21. Vapnik, V.: ‘Estimation of dependences based on empirical data’ (Springer, New York, NY, 2006).
        .
    22. 22)
    23. 23)
      • L.V. Jing-Jing .
        23. Jing-Jing, L.V.: ‘Fatigue recognition based on adaptive locality preserving projections’, Comput. Eng. Appl., 2010, 46, (22), pp. 187189.
        . Comput. Eng. Appl. , 22 , 187 - 189
    24. 24)
      • L. Lin , C. Huang , X. Ni .
        24. Lin, L., Huang, C., Ni, X., et al: ‘Driver fatigue detection based on eye state’, Technol. Health Care Off. J. Eur. Soc. Eng. Med., 2015, 23, (s2), pp. S453S463.
        . Technol. Health Care Off. J. Eur. Soc. Eng. Med. , S453 - S463
    25. 25)
      • I.H. Choi , S.K. Hong , Y.G. Kim .
        25. Choi, I.H., Hong, S.K., Kim, Y.G.: ‘Real-time categorization of driver's gaze zone using the deep learning techniques’. Int. Conf. Big Data and Smart Computing, 2016, pp. 143148.
        . Int. Conf. Big Data and Smart Computing , 143 - 148
    26. 26)
    27. 27)
    28. 28)
    29. 29)
      • A. Punitha , M.K. Geetha , A. Sivaprakash .
        29. Punitha, A., Geetha, M.K., Sivaprakash, A.: ‘Driver fatigue monitoring system based on eye state analysis’. Int. Conf. Circuit, Nagercoil, India, March 2014, pp. 14051408.
        . Int. Conf. Circuit , 1405 - 1408
    30. 30)
    31. 31)
      • V.B. Hemadri , U.P. Kulkarni .
        31. Hemadri, V.B., Kulkarni, U.P.: ‘Detection of drowsiness using fusion of yawning and eyelid movements’, Commun. Comput. Inf. Sci., 2013, 361, pp. 583594.
        . Commun. Comput. Inf. Sci. , 583 - 594
    32. 32)
      • X. Fan , Y. Sun , B. Yin .
        32. Fan, X., Sun, Y., Yin, B.: ‘Driver fatigue detection based on AdaBoost global features’, J. Comput. Inf. Syst., 2009, 5, (1), pp. 6168.
        . J. Comput. Inf. Syst. , 1 , 61 - 68
    33. 33)
    34. 34)
    35. 35)
    36. 36)
      • J.F. Hu .
        36. Hu, J.F.: ‘Comparison of different features and classifiers for driver fatigue detection based on a single EEG channel’, Comput. Math. Methods Med., 2017, 2017, (3), pp. 19, doi: 10.1155/2017/5109530.
        . Comput. Math. Methods Med. , 3 , 1 - 9
    37. 37)
http://iet.metastore.ingenta.com/content/journals/10.1049/htl.2017.0020
Loading

Related content

content/journals/10.1049/htl.2017.0020
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address