access icon openaccess Effect of skin dielectric properties on the read range of epidermal ultra-high frequency radio-frequency identification tags

This Letter presents an investigation of the effect of human tissue conductivity and permittivity on the performance of epidermal transfer tattoo ultra-high frequency radio-frequency identification (RFID) tags. The measurements were carried out on 20 individuals and the variations in the measured dielectric properties correlate well with variations in the measured tag read range on the individuals and to a lesser extent with their body mass index values. Simulation results also showed the effects of permittivity and conductivity on the designed resonance frequency of the RFID tag.

Inspec keywords: radiofrequency identification; skin; biomedical measurement; permittivity; bioelectric phenomena; electrical conductivity

Other keywords: human tissue conductivity; skin dielectric properties; permittivity; radiofrequency identification tags; epidermal ultrahigh frequency RFID tags; body mass index values

Subjects: Biomedical engineering; Bioelectricity; RFID systems; Bioelectric signals

References

    1. 1)
      • 17. Oyeka, D.O.: ‘Digitally fabricated epidermal transfer tattoo UHF radio frequency identification tags’. Thesis, University of Kent, 2015, available at: https://kar.kent.ac.uk/56651/1/171Dumtoos%20PhD%20Thesis%20-%20Final.pdf. Accessed: 29-November-2016.
    2. 2)
      • 11. Bazin, M., Soderstrom, R., Means, T.R.: ‘Ethnic differences in skin-fold thickness’, Am. J. Clin. Nutr., 1971, 24, (7), pp. 864868.
    3. 3)
    4. 4)
    5. 5)
    6. 6)
      • 13. Kanesan, M., Thiel, D.V., O'Keefe, S.G.: ‘The effect of lossy dielectric objects on a UHF RFID meander line antenna’. Proc. of the 2012 IEEE Int. Symp. on Antennas and Propagation, 2012, pp. 12.
    7. 7)
      • 16. Panagamuwa, C.J., Howells, I., Whittow, W.G.: ‘Conductivity and permittivity measurements of children and adult's hands covering mobile communications frequency bands’. Progress in Electromagnetics Research Symp. (PIERS), 2013, pp. 810814.
    8. 8)
      • 2. Rose, D.P., Ratterman, M., Griffin, D.K., et al: ‘System-level design of an RFID sweat electrolyte sensor patch’. 2014, 36th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, 2014, pp. 40384041.
    9. 9)
      • 14. ‘RF conductivity measurement’, available at http://www.speag.com/products/dak/dielectric-measurements/. Accessed: 29-November-2016.
    10. 10)
    11. 11)
      • 1. Oyeka, D., Batchelor, J.C.: ‘Tag diversity of inkjet printed body-worn radio frequency identification integrated medical sticking plasters for wireless monitoring’, Healthc. Technol. Lett., 2016, available at http://digital-library.theiet.org/content/journals/10.1049/htl.2016.0024 Accessed: 29-November-2016.
    12. 12)
      • 12. Miklavčič, D., Pavšelj, N., Hart, F.X.: ‘Electric properties of tissues’, (Wiley Encyclopedia of Biomedical Engineering, Wiley, 2006).
    13. 13)
    14. 14)
    15. 15)
      • 5. Sanchez-Romaguera, V., Yeates, S.G., Ziai, M.A., et al: ‘Enabling low cost UHF RFID transfer tattoo tags by inkjet printing means’. NIP & Digital Fabrication Conf., 2012, pp. 568570.
    16. 16)
      • 18. ‘Tagformance lite | Voyantic.’, available at https://voyantic.com/tagformance. Accessed: 29-November-2016.
    17. 17)
      • 8. Oyeka, D.O., Ziai, M.A., Batchelor, J.C., et al: ‘Developing inkjet printing to enable low cost UHF RFID transfer tattoo tags’. 2013 IEEE Int. Symp. Antennas and Propagation Society, July 2013, pp. 17261727.
    18. 18)
      • 6. Tribe, J., Oyeka, D.O., Batchelor, J.C.: ‘Tattoo antenna temporary transfers operating on-skin (TATTOOS)’, in Marcus, A. (ED.): ‘Design, user experience, and usability: users and interactions SE – 65’ (Springer International Publishing, 2015), vol. 9187, pp. 685695.
http://iet.metastore.ingenta.com/content/journals/10.1049/htl.2016.0072
Loading

Related content

content/journals/10.1049/htl.2016.0072
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading