Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Cardiac ultrasonography over 4G wireless networks using a tele-operated robot

This Letter proposes an end-to-end mobile tele-echography platform using a portable robot for remote cardiac ultrasonography. Performance evaluation investigates the capacity of long-term evolution (LTE) wireless networks to facilitate responsive robot tele-manipulation and real-time ultrasound video streaming that qualifies for clinical practice. Within this context, a thorough video coding standards comparison for cardiac ultrasound applications is performed, using a data set of ten ultrasound videos. Both objective and subjective (clinical) video quality assessment demonstrate that H.264/AVC and high efficiency video coding standards can achieve diagnostically-lossless video quality at bitrates well within the LTE supported data rates. Most importantly, reduced latencies experienced throughout the live tele-echography sessions allow the medical expert to remotely operate the robot in a responsive manner, using the wirelessly communicated cardiac ultrasound video to reach a diagnosis. Based on preliminary results documented in this Letter, the proposed robotised tele-echography platform can provide for reliable, remote diagnosis, achieving comparable quality of experience levels with in-hospital ultrasound examinations.

References

    1. 1)
      • 4. Vieyres, P., Novales, C., Rivas, R.: ‘The next challenge for Worldwide Robotized Tele-Echography eXperiment (WORTEX 2012): From engineering success to healthcare delivery; Congreso’. Its.Uvm.Edu, 2012, vol. TUMI II.
    2. 2)
    3. 3)
      • 2. WHO, mHealth: ‘New horizons for health through mobile technologies’. vol. 3 of Global Observatory for eHealth Series, 2011.
    4. 4)
      • 16. Ffmpeg.org: ‘FFMPEG software’. Available at http://ffmpeg.org/. [Accessed: 07-Apr-2016].
    5. 5)
      • 17. VideoLan: ‘VLC Media Player’. Available at http://www.videolan.org/. [Accessed: 07-Apr-2016].
    6. 6)
      • 13. http://www.adechotech.com/.
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
      • 6. Avgousti, v., Christoforou, E.G., Panayides, A.S., et al: ‘Medical telerobotic systems: current status and future trends’, Biomed. Eng. Online, 2016, 15, (1), http://biomedical-engineering-online.biomedcentral.com/articles/10.1186/s12938-016-0217-7.
    13. 13)
      • 20. ‘DICOM Supplement 149: MPEG-4 AVC/H.264 Transfer Syntax’. April 2011.
    14. 14)
      • 15. Panayides, A., Eleftheriou, I., Pantziaris, M.: ‘Open-source telemedicine platform for wireless medical video communication’, Int. J. Telemed. Appl., 2013, 2013, pp. 112, ISSN:1687-6415.
    15. 15)
      • 19. Wireshark.org: ‘Wireshark Network Protocol Analyzer’. Available at http://www.wireshark.org/. [Accessed: 07-Apr-2016].
    16. 16)
    17. 17)
      • 1. eHealth Action Plan 2012–2020 - Innovative healthcare for the 21st century’.
    18. 18)
      • 14. ‘Epiphan DVI2USB 3.0 frame grabber’. Available at http://www.epiphan.com/, [Accessed: 07-Apr-2016].
    19. 19)
    20. 20)
    21. 21)
      • 21. Bjøntegaard, G.: ‘Improvements of the BD-PSNR model’. ITU-T SG16 Q.6 Document, VCEG-AI11, Berlin, Germany, July 2008.
    22. 22)
      • 18. Chen, M., Wan, J., Li, F.: ‘Machine-to-machine communications: architectures, standards and applications’, KSII Trans. Internet Inf. Syst., 2012, 6, (2), pp. 480497.
    23. 23)
http://iet.metastore.ingenta.com/content/journals/10.1049/htl.2016.0043
Loading

Related content

content/journals/10.1049/htl.2016.0043
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address