Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Predicting adherence of patients with HF through machine learning techniques

Heart failure (HF) is a chronic disease characterised by poor quality of life, recurrent hospitalisation and high mortality. Adherence of patient to treatment suggested by the experts has been proven a significant deterrent of the above-mentioned serious consequences. However, the non-adherence rates are significantly high; a fact that highlights the importance of predicting the adherence of the patient and enabling experts to adjust accordingly patient monitoring and management. The aim of this work is to predict the adherence of patients with HF, through the application of machine learning techniques. Specifically, it aims to classify a patient not only as medication adherent or not, but also as adherent or not in terms of medication, nutrition and physical activity (global adherent). Two classification problems are addressed: (i) if the patient is global adherent or not and (ii) if the patient is medication adherent or not. About 11 classification algorithms are employed and combined with feature selection and resampling techniques. The classifiers are evaluated on a dataset of 90 patients. The patients are characterised as medication and global adherent, based on clinician estimation. The highest detection accuracy is 82 and 91% for the first and the second classification problem, respectively.

References

    1. 1)
      • 22. Tang, J., Alelyani, S., Liu, H.: ‘Feature selection for classification: A review’. Available at http://www.jiliang.xyz/publication/feature_selection_for_classification.pdf. accessed 21 March 2016.
    2. 2)
      • 38. Hassoun, M.: ‘Fundamentals of artificial neural networks’ (MIT Press, 2010).
    3. 3)
    4. 4)
      • 24. Kononenko, I.: ‘Estimating attributes: analysis and extensions of RELIEF’. inBergadano, F., Raedt, L.D. (Eds.): ‘Machine learning: ECML-94’ (Springer, Berlin Heidelberg, 1994), pp. 171182.
    5. 5)
    6. 6)
      • 16. Juarez, D.T., Williams, A.E., Chen, C., et al: ‘Factors affecting medication adherence trajectories for patients with heart failure’, Am. J. Manage. Care, 2015, 21, (3), pp. e197e205.
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
      • 32. Cortes, C., Vapnik, V.: ‘Support-vector networks’, Mach. Learn., 1995, 20, (3), pp. 273297.
    14. 14)
    15. 15)
      • 27. Sumner, M., Frank, E., Hall, M.: ‘Speeding up logistic model tree induction’. inJorge, A.M., Torgo, L., Brazdil, P., Camacho, R., Gama, J., (Eds.): ‘Knowledge discovery in databases: PKDD 2005’ (Springer, Berlin Heidelberg, 2005), pp. 675683.
    16. 16)
      • 23. Yu, L., Liu, H.: ‘Feature selection for high-dimensional data: a fast correlation-based filter solution – ICML03–111.pdf’. Proc. 20th Int. Conf. on Machine Learning, CA, USA, 2003.
    17. 17)
      • 39. Breiman, L., Friedman, J.H., Olshcn, R.A., et al: ‘Classification and regression trees’. Wadsworth Int. Group, Belmont CA, Wadsworth Int. Group, Belmont, CA, 1984, 1.
    18. 18)
      • 40. Chawla, N., Bowyer, K., Hall, L.O., et al: ‘SMOTE: synthetic minority over-sampling technique’, J. Artif. Intell. Res., 2002, 16, pp. 321357.
    19. 19)
      • 1. Cowie, M.R.: ‘The heart failure epidemic’ (Medicographia, Les Laboratoires Servier France, 2012).
    20. 20)
      • 15. Aggarwal, B., Pender, A., Mosca, L., et al: ‘Factors associated with medication adherence among heart failure patients and their caregivers’, J. Nurs. Educ. Pract., 2015, 5, (3), pp. 2227.
    21. 21)
      • 28. Salzberg, S.L.: ‘C4.5: programs for machine learning byJ. Ross Quinlan. Morgan Kaufmann Publishers, Inc., 1993’, Mach. Learn., 1994, 16, (3), pp. 235240.
    22. 22)
      • 37. Theodoridis, S., Koutroumbas, K.: ‘Pattern recognition’ (Elsevier, Academic Press, 2009).
    23. 23)
    24. 24)
      • 35. Mitchell, T.: ‘Machine learning’ (McGraw-Hill Science/Engineering/Math, Springer, 1997).
    25. 25)
      • 31. Cristianini, J., Shawe-Taylor, : ‘An introduction to support vector machines and other Kernel-based learning methods, pattern recognition and machine learning’ (Cambridge University Press, USA, 2000).
    26. 26)
      • 18. HEARTEN: ‘A co-operative mHealth environment targeting adherence and management of patients suffering from heart failure’. Available at http://www.hearten.eu/.
    27. 27)
    28. 28)
      • 11. Knafl, G.J., Riegel, B.: ‘What puts heart failure patients at risk for poor medication adherence?’, Patient Prefer Adherence, 2014, 8, pp. 10071018.
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
    35. 35)
      • 21. Hall, M.: ‘Correlation-based feature selection for machine learningDepartment of Computer Science, University of Waikato.
    36. 36)
      • 34. Murphy, K.P.: ‘Dynamic Bayesian networks: representation, inference and learning’, PhD dissertation, University of California, Berkeley, Citeseer, 2002.
    37. 37)
      • 20. Kohavi, R.: ‘Wrappers for performance enhancement and oblivious decision graphs’ (Stanford University, 1995).
    38. 38)
    39. 39)
      • 33. Frank, E.: ‘Fully supervised training of Gaussian radial basis function networks in WEKA’. Available at http://www.cs.waikato.ac.nz/~ml/publications/2014/rbf_networks_in_weka_description.pdf. accessed 05 May 2016.
    40. 40)
http://iet.metastore.ingenta.com/content/journals/10.1049/htl.2016.0041
Loading

Related content

content/journals/10.1049/htl.2016.0041
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address