Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Rising influence of synthetic biology in regenerative medicine

Synthetic biology is an emerging area of research that combines the investigative nature of biology with the constructive nature of engineering. Despite the field being in its infancy, it has already aided the development of a myriad of industrially and pharmaceutically useful compounds, devices and therapies and is now being applied within the field of regenerative medicine. By combining synthetic biology with regenerative medicine, the engineering of cells and organisms offers potential avenues for applications in tissue engineering, bioprocessing, biomaterial and scaffold development, stem cell therapies and even gene therapies. This review aims to discuss how synthetic biology has been applied within these distinct areas of regenerative medicine, the challenges it faces and any future possibilities this exciting new field may hold.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
      • 94. Cachat, E., Martin, K.C., Davies, J.A.: ‘Synthetic biology approaches for regenerative medicine’, Rev. Cell Biol. Mol. Med., 2014, pp. 523539.
    18. 18)
      • 93. Gaj, T., Gersbach, C.A., Barbas, C.F.: ‘ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering’, Cell, 2013, 31, (7), pp. 397405, doi: 10.1016/j.tibtech.2013.04.004.
    19. 19)
    20. 20)
      • 89. Hsu, P.D., Lander, E.S., Zhang, F.: ‘Development and applications of CRISPR-Cas9 for genome engineering’, Cell Press., 2014, 157, (6), pp. 12621278, http://dx.doi.org/10.1016/j.cell.2014.05.010.
    21. 21)
      • 49. Wilkinson, D.C., Alva-Ornelas, J.A., Sucre, J.M.S., et al: ‘Development of a three-dimensional bioengineering technology to generate lung tissue for personalized disease modelling’, Stem Cells Trans. Med., 2016, 5, (12), pp. 112, doi: 10.5966/sctm.2016-0192.
    22. 22)
    23. 23)
      • 43. Ritter, T., Nosov, M., Griffin, M.D.: ‘Gene therapy in transplantation: toward clinical trials’, Curr. Opin. Mol. Ther., 2009, 11, (5), pp. 504512.
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
      • 27. Callaway, E.: ‘Nature News: Stem cells that are pure enough for the clinic’, Nature, 2011, doi: 10.1038/nature.2011.9566.
    30. 30)
    31. 31)
    32. 32)
      • 88. Premsrirut, P.K., Martin, G., Dow, L., et al: ‘Abstract 4188: RNAi and CRISPR/Cas9 based in vivo models for drug discovery’, Cancer Res., 2016, (76), (14 Supplement), p. 4188, doi: 10.1158/1538-7445.AM2016-4188.
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
      • 72. Bhatia, P., Chugh, A.: ‘Synthetic biology based biosensors and the emerging governance issues’, Curr. Synthetic Syst. Biol., 2013, 01, (01), doi: 10.4172/2332-0737.1000108.
    38. 38)
    39. 39)
    40. 40)
    41. 41)
    42. 42)
    43. 43)
    44. 44)
    45. 45)
    46. 46)
    47. 47)
    48. 48)
    49. 49)
    50. 50)
    51. 51)
    52. 52)
    53. 53)
    54. 54)
    55. 55)
    56. 56)
    57. 57)
    58. 58)
    59. 59)
    60. 60)
    61. 61)
    62. 62)
    63. 63)
      • 68. National Research Council (US) Committee on Bioprocess Engineering. Putting Biotechnology to Work: Bioprocess Engineering. Washington (DC): National Academies Press (US); 1992. 4, Current Bioprocess Technology, Products, and Opportunities, https://www.ncbi.nlm.nih.gov/books/NBK236005/ [accessed 06/01/2017].
    64. 64)
      • 91. Heidari, R., Shaw, D.M., Elger, B.S.: ‘CRISPR and the rebirth of synthetic biology’, Sci. Eng. Ethics, 2016, 23, (2), pp. 113, article. doi: org/10.1007/s11948-016-9768-z.
    65. 65)
    66. 66)
      • 55. Tan, J., Saltzman, W.M.: ‘Micro-engineered biomineralized materials for bone tissue engineering’ (IEEE, Houston, TX, 2002), pp. 807808.
    67. 67)
    68. 68)
      • 37. Heng, B.C., Fussenegger, M.: ‘The synthetic biology approach to stem cells and regenerative medicine’, in Meyers, R.A.: ‘Encyclopedia of molecular cell biology and molecular medicine’ (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2015), pp. 117.
    69. 69)
    70. 70)
    71. 71)
    72. 72)
    73. 73)
      • 36. Cachat, E., Davies, J.: ‘Application of synthetic biology to regenerative medicine’, J. Bioeng. Biomed. Sci., 2011, S2, doi: 10.4172/2155- 9538.S2-003.
    74. 74)
    75. 75)
    76. 76)
    77. 77)
      • 95. Hug, K.: ‘Sources of human embryos for stem cell research: ethical problems and their possible solutions’, Medicina (Kaunas), 2005, 41, (12), pp. 10021010.
    78. 78)
    79. 79)
      • 77. Barfoot, J.: ‘What diseases and conditions can be treated with stem cells’, 2017. Available from www.eurostemcell.org, accessed 01/02/2017.
    80. 80)
    81. 81)
    82. 82)
    83. 83)
    84. 84)
      • 3. Gurdon, J.B.: ‘Adult frogs derived from the nuclei of single somatic cells’, J. Embryol. Exp. Morphol., 1962, 10, pp. 622640.
    85. 85)
    86. 86)
    87. 87)
      • 9. Weiss, R., Knight, T.F.Jr.: DNA6: Sixth Int. Workshop on DNA-Based Computers, DNA2000, Leiden, The Netherlands, 2000, pp. 116.
    88. 88)
      • 39. Basu, S., Mehreja, R., Thiberge, S., et al: ‘Spatiotemporal control of gene expression with pulse-generating networks’. Proc. of the National Academy of Sciences of the United States of America, 27 April 2004, vol. 101, (17), pp. 63556360.
    89. 89)
    90. 90)
    91. 91)
    92. 92)
    93. 93)
    94. 94)
      • 51. Hubbell, J.A.: ‘Biomaterials in tissue engineering’, Biotechnology, 1995, 13, (6), pp. 565576.
    95. 95)
    96. 96)
http://iet.metastore.ingenta.com/content/journals/10.1049/enb.2017.0007
Loading

Related content

content/journals/10.1049/enb.2017.0007
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address