http://iet.metastore.ingenta.com
1887

Quantum dot based nanophotonics and nanoelectronics

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article PDF
$23.94
Buy Knowledge Pack
10 articles for $144.00

Abstract

Invention of non-disruptive fabrication technologies for semiconductor quantum dots presented a dream for generations of semiconductor device engineers. Today such technologies exist. A wealth of completely novel devices and such with dramatically improved properties based either on a single/few or a large density of quantum dots appears. Among them are single q-bit emitters, nano-flash memories, ultrafast lasers and amplifiers enabling a wealth of advanced systems.

References

    1. 1)
      • D. Bimberg , M. Grundmann , N.N. Ledentsov . (1998) Quantum dot heterostructures.
    2. 2)
      • O. Stier , M. Grundmann , D. Bimberg . Electronic and optical properties of strained quantum dots modeled by 8-band k·p theory. Phys. Rev B
    3. 3)
      • P. Borri , S. Schneider , W. Langbein , D. Bimberg . Ultrafast carrier dynamics in InGaAs quantum dot materials and devices. J. Opt. A
    4. 4)
      • 1 onward link is available for this reference.
      • CrossRef
    5. 5)
      • Dingle, R., Henry, C.H.: U.S. Patent 3 982 207, 1976.
    6. 6)
      • 1 onward link is available for this reference.
      • CrossRef
    7. 7)
      • M. Asada . Gain and the threshold of three-dimensional quantum-box lasers. IEEE J. Quantum Electron.
    8. 8)
      • 1 onward link is available for this reference.
      • CrossRef
    9. 9)
      • 1 onward link is available for this reference.
      • CrossRef
    10. 10)
      • D. Bimberg . Self-organization processes in MBE-grown quantum dot structures. Thin Solid Films
    11. 11)
      • V.A. Shchukin , D. Bimberg . Spontaneous ordering of nanostructures on crystal surfaces. Rev. Mod. Phys.
    12. 12)
      • V.A. Shchukin , N.N. Ledentsov , D. Bimberg . (2003) Epitaxy of nanostructures.
    13. 13)
      • 1 onward link is available for this reference.
      • CrossRef
    14. 14)
      • 1 onward link is available for this reference.
      • CrossRef
    15. 15)
      • 1 onward link is available for this reference.
      • CrossRef
    16. 16)
      • 1 onward link is available for this reference.
      • CrossRef
    17. 17)
      • 1 onward link is available for this reference.
      • CrossRef
    18. 18)
      • A Quantum Information Science and Technology Roadmap, ARDA 2004.
    19. 19)
      • A. Lochmann . Electrically driven single quantum dot polarised single photon emitter. Electron. Lett. , 13
    20. 20)
      • M. Scholz . Non-classical light emission from a single electrically driven quantum dot. Opt. Express
    21. 21)
      • Geller, M., Marent, A., Bimberg, D.: CPT Patent Appl., 2006.
    22. 22)
      • 1 onward link is available for this reference.
      • CrossRef
    23. 23)
      • M. Grundmann , D. Bimberg . Gain and threshold of quantum dot lasers: theory and comparison to experiments. Jpn. J. Appl. Phys.
    24. 24)
      • 1 onward link is available for this reference.
      • CrossRef
    25. 25)
      • 1 onward link is available for this reference.
      • CrossRef
    26. 26)
      • 1 onward link is available for this reference.
      • CrossRef
    27. 27)
      • N.N. Ledentsov . High performance quantum dot lasers on GaAs substrates operating in 1.5 µm range. Elctron. Lett. , 15
    28. 28)
      • 1 onward link is available for this reference.
      • CrossRef
    29. 29)
      • 1 onward link is available for this reference.
      • CrossRef
    30. 30)
      • 1 onward link is available for this reference.
      • CrossRef
    31. 31)
      • 1 onward link is available for this reference.
      • CrossRef
    32. 32)
      • M. Kuntz . Direct modulation and mode locking of 1.3 µm quantum dot lasers. New J. Phys.
    33. 33)
      • 1 onward link is available for this reference.
      • CrossRef
    34. 34)
      • G. Huyet . Quantum dot semiconductor lasers with optical feedback. Physica. Status. Solidi B
    35. 35)
      • 1 onward link is available for this reference.
      • CrossRef
    36. 36)
      • 1 onward link is available for this reference.
      • CrossRef
    37. 37)
      • A. Capua . Direct correlation between a highly damped modulation response and ultra low relative intensity noise in an InAs/GaAs quantum dot laser. Opti. Express
    38. 38)
      • 1 onward link is available for this reference.
      • CrossRef
    39. 39)
      • M.G. Thompson . Mode-locked quantum dot lasers for picosecond pulse generation. Proc. SPIE
    40. 40)
      • 1 onward link is available for this reference.
      • CrossRef
    41. 41)
      • D. Bimberg . High-frequency nanophotonic devices. Proc SPIE , 0277 - 786
    42. 42)
      • 1 onward link is available for this reference.
      • CrossRef
    43. 43)
      • T. Vallaitis . IEEE J. Quantum Electron.. IEEE J. Quantum Electron.
    44. 44)
      • D. Bimberg , N.N. Ledentsov , J.A. Lott . MRS Bull.. MRS Bull.
    45. 45)
      • N.N. Ledentsov . IEEE J. Sel. Top. Quantum Electron.. IEEE J. Sel. Top. Quantum Electron.
    46. 46)
      • 1 onward link is available for this reference.
      • CrossRef
    47. 47)
      • F. Hopfer . IEEE J. Sel. Top. Quantum Electron.. IEEE J. Sel. Top. Quantum Electron.
    48. 48)
      • V.A. Shchukin . 20 Gb/s 85°C Error-Free Operation of VCSELs Based on Submonolayer Deposition of Quantum Dots. Proc. SPIE (Photonics West 2008)

Related content

content/journals/10.1049/el_20080074
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
Errata
An Erratum has been published for this content:
Erratum for ‘Quantum dot based nanophotonics and nanoelectronics’
This is a required field
Please enter a valid email address