Ionic electroactive polymer control using co-evolutionary optimisation
Ionic electroactive polymer control using co-evolutionary optimisation
- Author(s): H.J. Kim ; J. Shin ; S. Kang ; S.J. Kim ; M.-J. Tahk
- DOI: 10.1049/el:20071315
For access to this article, please select a purchase option:
Buy article PDF
Buy Knowledge Pack
IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.
Thank you
Your recommendation has been sent to your librarian.
- Author(s): H.J. Kim 1 ; J. Shin 1 ; S. Kang 1 ; S.J. Kim 1 ; M.-J. Tahk 2
-
-
View affiliations
-
Affiliations:
1: School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Korea
2: Aerospace Engineering Division, Korea Advanced Institute of Science and Techonology, Daejeon, Korea
-
Affiliations:
1: School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Korea
- Source:
Volume 43, Issue 16,
2 August 2007,
p.
859 – 860
DOI: 10.1049/el:20071315 , Print ISSN 0013-5194, Online ISSN 1350-911X
Electroactive polymers are attracting much attention as sensors and actuators, but control algorithms need to address their non-repeatability to enhance their practicality. In this Letter, classical control is revisited with the co-evolutionary augmented Lagrangian method to develop a simple yet robust controller for an ionic electroactive polymer strip.
Inspec keywords: polymers; polymer electrolytes; robust control; power system control; evolutionary computation
Other keywords: coevolutionary augmented Lagrangian method; robust controller; ionic electroactive polymer strip; ionic electroactive polymer control; coevolutionary optimisation
Subjects: Control of electric power systems; Optimisation techniques; Optimisation techniques; Power system control; Electrochemical conversion and storage; Self-diffusion and ionic conduction in solid nonmetals
References
-
-
1)
- K.J. Kim , S. Tadokoro . (2007) Electroactive polymers in robotic applications.
-
2)
- K. Takagi , Y. Nakabo , Z.-W. Luo , T. Mukai , M. Yamamura , Y. Hayakawa . An analysis of increase of bending response in IPMC dynamics given uniform input. Proc. SPIE , 298 - 309
-
3)
- L. Zhang , Y. Yang . Modeling of an ionic polymer-metal composite beam on human tissue. Smart Mater. Struct. , 197 - 206
-
4)
- R.C. Richardson , M.C. Levesley , M.D. Brown , J.A. Hawkes , K. Watterson , P.G. Walker . Control of ionic polymer metal composite. IEEE/ASME Trans. Mechatronics , 2 , 245 - 253
-
5)
- B.C. Lavu , M.P. Schoen , A. Mahajan . Adaptive intelligent control of ionic polymer-metal composites. Smart Mater. Struct , 466 - 474
-
6)
- P. Arena , C. Bonomo , L. Fortuna , M. Frasca , S. Graziani . Design and control of an IPMC wormlike robot. IEEE Trans. Syst. Man Cybern. B , 5 , 1044 - 1052
-
7)
- K. Zhou , J.C. Doyle . (1997) Essentials of robust control.
-
8)
- S.J. Kim , I.T. Lee , Y.H. Kim . Performance improvement of an ionic polymer-metal composite actuator by parylene thin film coating. Smart Mater. Struct. , 1540 - 1546
-
9)
- J.H. He , H.M. Liu , N. Pan . Variational model for ionomeric polymer-metal composite. Polymer , 26 , 8195 - 8199
-
10)
- J.H. He . Allometric scaling law in conductive polymer. Polymer , 26 , 9067 - 9070
-
11)
- M.J. Tahk , B.C. Sun . Co-evolutionary augmented Lagrangian methods for constrained optimization. IEEE Trans. Evol. Comput. , 2 , 114 - 124
-
1)

Related content
