GaAs/AlGaAs quantum well intermixing using buried Al-oxide layer

Access Full Text

GaAs/AlGaAs quantum well intermixing using buried Al-oxide layer

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Electronics Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Using buried wet-oxidised AlxOy layers to enhance impurity free vacancy diffusion, the intermixing of GaAs/AlGaAs quantum wells has been achieved. A 70 Å thick GaAs quantum well shows a blueshift of 59 meV when the sample is annealed at 950°C for 120 s. By cathodeluminescence measurements, it is confirmed that the bandgap transition region is localised laterally within 1 µm of the oxide/nonoxide interface.

Inspec keywords: semiconductor quantum wells; aluminium compounds; annealing; vacancies (crystal); cathodoluminescence; III-V semiconductors; chemical interdiffusion; gallium arsenide

Other keywords: oxide/nonoxide interface; 120 s; impurity free vacancy diffusion; 950 degC; quantum well intermixing; 70 angstrom; buried wet-oxidised layers; bandgap transition region; blueshift; GaAs-AlGaAs; annealing; cathodoluminescence measurements; III-V semiconductors

Subjects: Semiconductor superlattices, quantum wells and related structures; Interstitials and vacancies; Optical properties of II-VI and III-V semiconductors (thin films, low-dimensional and nanoscale structures); Electron states in low-dimensional structures; Annealing processes; Chemical interdiffusion in solids; Luminescent materials; Cathodoluminescence, ionoluminescence (condensed matter); Annealing processes in semiconductor technology

References

    1. 1)
      • J.S. Choe , S.W. Ryu , B.D. Choe , H. Lim . Effect of wet oxidized AlxGa1-xAs layer onthe interdiffusion of InGaAs/GaAs quantum wells. J. Appl. Phys. , 5779 - 5782
    2. 2)
      • L.J. Guido , N. Holonyak , K.C. Hsieh , J.E. Baker . Depth-dependentnative-defect-induced layer disordering in AxGa1-xAs-GaAs quantum well heterostructures. Appl. Phys. Lett. , 262 - 264
    3. 3)
      • C.K. Lin , X. Zhang , P.D. Dapkus , D.H. Rich . Spatially selectivedisordering of InGaAs/GaAs quantum wells using an AlAs native oxide and thermal annealing technique. Appl. Phys. Lett. , 3108 - 3110
    4. 4)
      • J.H. Shin , H.E. Shin , Y.H. Lee . Effect of carrier diffusion in oxidizedvertical-cavity surface-emitting lasers determined from lateral spontaneous emission. Appl. Phys. Lett. , 2652 - 2654
    5. 5)
      • S. Guha , F. Agahi , B. Pezeshki , J.H. Kash , D.W. Kisher , N.A. Bojarczuk . Microstructure of AlGaAs-oxide heterolayers formed by wet oxidation. Appl. Phys. Lett. , 906 - 908
    6. 6)
      • D.G. Deppe , L.G. Guido , N. Holonyak , K.C. Hsieh , R.D. Burnham , R.L. Thornton , T.L. Paoli . Stripe-geometry quantum well heterostructure AlxGa1-xAs-GaAslasers defined by defect diffusion. Appl. Phys. Lett. , 510 - 512
http://iet.metastore.ingenta.com/content/journals/10.1049/el_20000238
Loading

Related content

content/journals/10.1049/el_20000238
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading