Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Efficient high-temperature CW lasing operation of oxide-confined long-wavelength InAs quantum dot lasers

Efficient high-temperature CW lasing operation of oxide-confined long-wavelength InAs quantum dot lasers

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Electronics Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Efficient, continuous-wave lasing operation of narrow-stripe, oxide-confined, long-wavelength InAs quantum dot lasers in the ground state (λ ≃ 1.28 µm) has been achieved at temperatures up to 100°C. The lasers have a very low threshold current density (Jth = 24 A/cm2), high differential quantum efficiency (55%), and very low internal loss (αi = 0.77 cm-1).

References

    1. 1)
      • G. Park , O.B. Shchekin , S. Csutak , D.L. Huffaker , D.G. Deppe . Room-temperature continuous-wave operation of a single-layered 1.3 µmquantum dot laser. Appl. Phys. Lett. , 21 , 3267 - 3269
    2. 2)
      • L.F. Lester , A. Stintz , H. Li , T.C. Newell , E.A. Pease , B.A. Fuchs , K.J. Malloy . Optical characteristics of 1.24 µm InAs quantum dot laser diodes. IEEE Photonics Technol. Lett. , 8 , 931 - 933
    3. 3)
      • J.M. Dallesasse , N. Holonyak , A.R. Sugg , T.A. Richard , N. El-Zein . Hydrolyzation oxidation of AlGaAs-AlAs-GaAs quantum well heterostructuresand superlattices. Appl. Phys. Lett. , 26 , 2844 - 2846
    4. 4)
      • D.L. Huffaker , G. Park , Z. Zou , O.B. Shchekin , D.G. Deppe . 1.3 µm room temperature GaAs-based quantum-dot laser. Appl. Phys. Lett. , 18 , 2564 - 2566
    5. 5)
      • Yu.M. Shernyakov , D.A. Bedarev , E.Yu. Kondrat'eva , P.S. Kop'ev , A.R. Kovsh , N.A. Maleev , M.V. Maximov , S.S. Mikhrin , A.F. Tsatsul'nikov , V.M. Ustinov , B.V. Volovik , A.E. Zhukov , Zh.I. Alferov , N.N. Ledentsov , D. Bimberg . 1.3 µm GaAs-based laser using quantum dots obtained by activatedspinodal decomposition. Electron. Lett. , 11 , 898 - 900
    6. 6)
      • K. Mukai , N. Ohtsuka , H. Shoji , M. Sugawara , N. Yokoyama , H. Ishikawa . 1.3 µm CW lasing of InGaAs/GaAs quantum dots at room temperaturewith a threshold current of 8 mA. IEEE Photonics Technol. Lett. , 10 , 1205 - 1207
    7. 7)
      • M. Grundmann , D. Bimberg . Theory of random-population for quantum dots. Phys. Rev. B , 15 , 9740 - 9745
    8. 8)
      • D.L. Huffaker , O. Baklenov , L.A. Graham , B.G. Streetman , D.G. Deppe . Quantum dot vertical cavity surface emitting laser with a dielectricaperture. Appl. Phys. Lett. , 18 , 2356 - 2358
http://iet.metastore.ingenta.com/content/journals/10.1049/el_20000124
Loading

Related content

content/journals/10.1049/el_20000124
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address