Large-signal compression-current measurements in high-power microwave pin photodiodes

Access Full Text

Large-signal compression-current measurements in high-power microwave pin photodiodes

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Electronics Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The authors present the first large-signal compression measurements for surface-illuminated pin microwave photodetectors. The maximum RF power delivered by the photodiodes was +12, +17 and +20 dBm for bandwidths of 25, 3 and 1 GHz, respectively.

Inspec keywords: semiconductor device measurement; photodetectors; power semiconductor diodes; microwave diodes; microwave photonics; electric current measurement; p-i-n photodiodes

Other keywords: RF power; high power microwave pin photodiode; large signal compression current measurement; surface illumination; 25.3 GHz; photodetector; bandwidth; 1 GHz

Subjects: Current measurement; Solid-state microwave circuits and devices; Microwave photonics; Photoelectric devices; Photodetectors

References

    1. 1)
      • K.J. Williams , R.D. Esman . Photodiode DC and microwave nonlinearity at high currents due to carrierrecombination nonlinearities. IEEE Photonics Technol. Lett. , 7 , 1015 - 1017
    2. 2)
      • J. Paslaski . High-power microwave photodiode for improving performance of RF fiberoptic links. Proc. SPIE-Photonics Radio Freq. , 110 - 119
    3. 3)
      • G.A. Davis . A 920–1650 nm high-current photodetector. IEEE Photonics Technol. Lett. , 1373 - 1375
    4. 4)
      • K.J. Williams , R.D. Esman , M. Dagenais . Effects of high space-charge fields on the response of microwave photodetectors. IEEE Photonics Technol. Lett. , 5 , 639 - 641
    5. 5)
      • K.J. Williams . Differences in p-side and n-side illuminated pinphotodiode nonlinearities. IEEE Photonics Technol. Lett. , 1 , 132 - 135
    6. 6)
      • S. Jasmin . Diluted- and distributed-absorption microwave waveguide photodiodes forhigh efficiency and high power. IEEE Trans. , 8 , 1337 - 1341
    7. 7)
      • C.L. Goldsmith . Principles and performance of traveling-wave photodetector arrays. IEEE Trans. , 8 , 1342 - 1350
    8. 8)
      • K.S. Giboney . Traveling-wave photodetector design and measurements. IEEE J. Sel. Top. Quantum Electron. , 3 , 622 - 629
    9. 9)
      • N. Shimizu , M. Watanabe , T. Furuta , T. Ishibashi . InP-InGaAs uni-traveling-carrier photodiode with improved 3-dB bandwidthof over 150 GHz. IEEE Photonics Technol. Lett. , 3 , 412 - 414
    10. 10)
      • A.R. Williams , K.L. Kellner , P.K.L. Yu . High frequency saturation measurements of an InGaAs/InP waveguide photodetector. Electron. Lett. , 14 , 1298 - 1299
    11. 11)
      • L.Y. Lin . High-power high-speed photodetectors—design, analysis and experimentaldemonstration. IEEE Trans. , 8 , 1320 - 1331
    12. 12)
      • P. Hill , J. Schlafer , W. Powazinik , M. Urban , E. Eichen , R. Olshansky . Measurement of hole velocity in n-type InGaAs. Appl. Phys. Lett.
http://iet.metastore.ingenta.com/content/journals/10.1049/el_19990057
Loading

Related content

content/journals/10.1049/el_19990057
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading