DC electroluminescence from PECVD grown thin films of silicon-rich silica

Access Full Text

DC electroluminescence from PECVD grown thin films of silicon-rich silica

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Electronics Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The authors report the fabrication of an electroluminescent MOS device using microclustered silicon in silica as the active layer. A DC electroluminescence spectrum is shown and compared with photoluminescence from the same material. A current-voltage curve is presented which shows weak rectifying behaviour and is consistent with a space-charge limited structure with a high resistivity layer.

Inspec keywords: electroluminescent devices; MIS devices; silicon compounds; plasma CVD coatings; insulating thin films; electroluminescence; space-charge limited devices

Other keywords: high resistivity layer; microclustered Si; Au-SiO-Si; weak rectifying behaviour; current-voltage curve; space-charge limited structure; I-V curve; photoluminescence; PECVD grown thin films; SiOx films; fabrication; electroluminescent MOS device; electroluminescence spectrum; Si-rich silica; DC electroluminescence

Subjects: Electroluminescent devices; Metal-insulator-semiconductor structures; Luminescent materials

References

    1. 1)
      • A.J. Kenyon , P.F. Trwoga , C.W. Pitt , G. Rehm . The origin of photoluminescence from thin films of silicon-rich silica. J. Appl. Phys. , 12 , 9291 - 9300
    2. 2)
      • M.A. Lampert , P. Mar . (1970) Current injection in solids.
    3. 3)
      • G.G. Qin , A.P. Li , B.R. Zhang , B.-C. Li . J. Appl. Phys.. J. Appl. Phys.
    4. 4)
      • Tompa, G.S., Morton, D.C., Sywe, B.S., Lu, Y., Forsythe, E.W., Ott, J.A., Smith, D., Khurgin, J., Khan, B.A.: Mat. Res. Soc. Proc., 1994, 358, Boston, MA, p. 701.
    5. 5)
      • T. Ito , A. Hiraki . (1993) J. Luminesc..
    6. 6)
      • A. Bsiesy , J.C. Vial , F. Gaspard , R. Herino , M. Ligeon , F. Muller , R. Romestain , H.R. Huff , W. Bergholz , K. Sumino . (1994) Semiconductor-silicon.
    7. 7)
      • I.M. Chang , S.C. Pan , Y.F. Chen . Phys. Rev. B.. Phys. Rev. B.
    8. 8)
      • L.T. Canham . Silicon quantum wire array fabrication by electrochemical and chemicaldissolution of wafers. Appl. Phys. Lett. , 10 , 1046 - 1050
    9. 9)
      • A. Loni , A.J. Simmons , T.I. Cox , P.D.J. Calcott , L.T. Canham . Electroluminescent porous silicon device with an external quantum efficiencygreater than 0.1% under CW operation. Electron. Lett. , 15 , 1288 - 1289
    10. 10)
      • Boeringer, D.W., Tsu, R.: `Modelling the multiplicity of conductance structures in clusters of siliconquantum dots', Mat. Res. Soc. Proc. Symp., 1995, 358, p. 569–574.
http://iet.metastore.ingenta.com/content/journals/10.1049/el_19961122
Loading

Related content

content/journals/10.1049/el_19961122
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading