Application of transmission line matrix (TLM) method to numerical modelling of a MESFET distributed amplifier

Access Full Text

Application of transmission line matrix (TLM) method to numerical modelling of a MESFET distributed amplifier

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Electronics Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The authors present a model for wideband amplifiers which was the transmission line matrix (TLM) technique. Initially, the model is validated against analytical results, following which investigations into varying model parameters and their effects on the amplifier behaviour are described.

Inspec keywords: wideband amplifiers; MESFET circuits; microwave amplifiers; distributed amplifiers; microwave circuits; transmission line matrix methods

Other keywords: amplifier behaviour; wideband amplifiers; transmission line matrix; microwave amplifiers; numerical modelling; MESFET distributed amplifier; model parameters

Subjects: Transmission line theory; Solid-state microwave circuits and devices; Amplifiers

References

    1. 1)
      • S.Y.R. Hui , K.K. Fung , C. Christopoulos . Decoupled simulation of DC-linked power electronic systems using transmission-linelinks. IEEE Trans. , 85 - 91
    2. 2)
      • K.B. Niclas , W.T. Wilser , T.R. Kritzer , R.R. Pereira . On theory and performance ofsolid-state microwave distributed amplifiers. IEEE Trans. , 447 - 456
    3. 3)
      • Y. Ayasli , R.L. Mozzi , J.L. Vorhaus , L.D. Reynolds , R.A. Pucel . A monolithic GaAs 1–13 GHz travelling-wave amplifier. IEEE Trans. , 976 - 981
    4. 4)
      • G. Bianucci , C.S. Aitchison . Predicted transient response of the distributed amplifier. Electron. Lett. , 2096 - 2098
    5. 5)
      • D.M. Stubbs , S.H. Pulko , B. Wilson . Extension of the transmission line matrix(TLM) method in its application to lumped networks. Electron. Lett. , 1849 - 1851
    6. 6)
      • S.H. Pulko , A. Mallik , P.B. Johns . Application of transmission-line modelling (TLM) to thermal diffusionin bodies of complex geometry. Int. J. Numer. Methods Eng. , 2303 - 2312
    7. 7)
      • W.J.R. Hoefer . The transmission-line matrix method - theory and applications. IEEE Trans. , 882 - 892
    8. 8)
      • P.B. Johns , M. O'Brien . Use of the transmission-line modelling (t.l.m) method to solvenon-linear lumped networks. Radio Electron. Eng. , 59 - 70
    9. 9)
      • P.B. Johns , R.L. Beurle . Numerical solution of 2-dimensional scattering problems using a transmission-linematrix. Proc. IEE , 1203 - 1208
    10. 10)
      • P.M.R.S. Moreira , I.Z. Danvazeh , J.J. O'Reilly . Distributed amplifier signal shapingstrategy for multigigabit digital optical transmission. Electron. Lett. , 655 - 657
http://iet.metastore.ingenta.com/content/journals/10.1049/el_19961100
Loading

Related content

content/journals/10.1049/el_19961100
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading