Assessment of switching speed of optical bistability in semiconductor laser amplifiers

Access Full Text

Assessment of switching speed of optical bistability in semiconductor laser amplifiers

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Electronics Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Measured hysteresis characteristics are presented for a bistable Fabry-Perot laser amplifier operating at high switching rates. The results show that optical bistability ceases to be evident at a repetition frequency of around 250 MHz, corresponding to a data rate of 500 Mbit/s, which indicates switching times commensurate with the carrier recombination time.

Inspec keywords: optical bistability; switching; semiconductor junction lasers; amplifiers; hysteresis

Other keywords: maximum clock rate; 500 Mbit/s; 250 MHz repetition frequency; semiconductor laser amplifiers; high switching rates; switching speed; data rate; high-speed optical logic; Fabry-Perot type; hysteresis characteristics; optical bistability

Subjects: Laser optical systems: design and operation; Nonlinear optics and devices; Lasing action in semiconductors; Nonlinear optics; Semiconductor lasers

References

    1. 1)
      • H.C. Lefevre . Single-mode fibre fractional wave devices and polarisation controllers. Electron. Lett. , 778 - 780
    2. 2)
      • W.F. Sharfin , M. Dagenais . Room-temperature optical bistability in InGaAsP/InP amplifiers and implications for passive devices. Appl. Phys. Lett. , 918 - 821
    3. 3)
      • H.M. Gibbs . (1985) , Optical bistability, controlling light with light.
    4. 4)
      • H.M. Gibbs , S.S. Tarng , J.L. Jewell , D.A. Weinberger , K. Tai , A.C. Gossard , S.L. McCall , A. Passner , W. Wiegmann . Room temperature exitonic optical bistability in a GaAs-GaAlAs superlattice etalon. Appl. Phys. Lett. , 221 - 222
    5. 5)
      • H.J. Westlake , M.J. Adams , M.J. O'Mahony . Measurement of optical bistability in an InGaAsP laser amplifier at 1.5 μm. Electron. Lett. , 992 - 993
    6. 6)
      • M.J. Adams . Time-dependent analysis of active and passive optical bistability in semiconductors. IEE Proc. J, Optoelectron. , 343 - 348
    7. 7)
      • M.J. Adams , H.J. Westlake , M.J. O'mahony , I.D. Henning . A comparison of active and passive bistability in semiconductors. IEEE J. Quantum Electron. , 1498 - 1504
    8. 8)
      • D. Craig , A.K. Miller , J.G.H. Mathew , A.K. Kar . Fast optical switching and bistability in room temperature CdHgTe at 10.6 μm. Infrared Phys. , 289 - 294
    9. 9)
      • R. Wyatt , W.xJ. Devlin . 10kHz linewidth 1.5μm InGaAsP external cavity laser with 55nm tuning range. Electron. Lett. , 110 - 112
http://iet.metastore.ingenta.com/content/journals/10.1049/el_19860369
Loading

Related content

content/journals/10.1049/el_19860369
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading