http://iet.metastore.ingenta.com
1887

access icon free Reply: Algorithms for computing relative neighbourhood graph

  • PDF
    291.5810546875Kb

There is no abstract available for this article. Use the preview function.

References

    1. 1)
      • Toussaint, G.T.: `The relative neighbourhood graph of a finite planar set', SOCS 79.7, Tech. Rept., May 1979.
    2. 2)
      • Toussaint, G.T.: `The relative neighbourhood graph of a finite planar set', BPRA Conference, January 1980, Oxford, also presented at.
    3. 3)
      • G.T. Toussaint . The relative neighbourhood graph of a finite planar set. Pattern Recognition , 4
    4. 4)
      • R.B. Urquhart . Algorithms for computation of relative neighbourhood graph. Electron. Lett. , 14 , 556 - 557
    5. 5)
      • SIBSON, R.: private communication.
    6. 6)
      • K.R. Gabriel , R.R. Sokal . A new statistical approach to geographical variation analysis. System. Zoo. , 256 - 278
    7. 7)
      • D.W. Matula , R.R. Sokal . Properties of Gabriel graphs relevant to geographical variation research and clustering of points in the plane. Geograph. Anal. , 205 - 222
    8. 8)
      • R. Sibson . Locally equiangular triangulations. Comput. J. , 243 - 245
http://iet.metastore.ingenta.com/content/journals/10.1049/el_19800612
Loading

Related content

content/journals/10.1049/el_19800612
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
Replies
This article contains a Reply to the following content:
Comment: Algorithms for computing relative neighbourhood graph
This is a required field
Please enter a valid email address