http://iet.metastore.ingenta.com
1887

Digital filtering using polynomial transforms

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article PDF
$23.94
Buy Knowledge Pack
10 articles for $144.00

Abstract

We define discrete transforms in a ring of polynomials. These polynomial transforms have the circular convolution property and can be used for the fast computation of 2-dimensional cyclic convolutions. This yields efficient algorithms for the implementation of 1- and 2-dimensional digital filters.

References

    1. 1)
      • J.W. Cooley , J.W. Tukey . An algorithm for machine calculation of complex Fourier series. Math. Comput. , 297 - 301
    2. 2)
      • J.M. Pollard . The fast Fourier transform in a finite field. Math. Comput. , 365 - 374
    3. 3)
      • C.M. Rader . Discrete convolution via Mersenne transforms. IEEE Trans. , 1269 - 1273
    4. 4)
      • R.C. Agarwal , C.S. Burrus . Number theoretic transforms to implement fast digital convolution. Proc. IEEE , 550 - 560
    5. 5)
      • H.J. Nussbaumer . Digital filtering using complex Mersenne transforms. IBM J. Res. & Der. , 498 - 504
    6. 6)
      • T. Nagell . (1964) , Introduction to number theory.
    7. 7)
      • Winograd, S.: `The effect of the field of constants on the number ol multiplications', Proceedings of 16th symposium of Found. Comput. Science, 1975, p. 1–2.
    8. 8)
      • S. Winograd . On computing the discrete Fourier transform. Proc. Nat. Acad. Sci. USA , 1005 - 1006
    9. 9)
      • R.C. Agarwal , C.S. Burrus . Fast one-dimensional digital convolution by multidimensional techniques. IEEE Trans. , 1 - 10

Related content

content/journals/10.1049/el_19770280
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address