http://iet.metastore.ingenta.com
1887

Exact analysis of the least-mean-square algorithm with coloured measurement noise

Exact analysis of the least-mean-square algorithm with coloured measurement noise

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Electronics Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In general, theoretical analyses of adaptive filtering algorithms employ statistical approximations in order to render the derivations tractable. Among such hypotheses, the statistical independence between the current adaptive coefficients and past input vectors is a very popular one. Unfortunately, this simplification gives rise to discrepancies with respect to empirical results, especially for large values of the step-size parameter. In this Letter, this issue is overcome by the usage of an exact expectation analysis (i.e. a stochastic model that does not employ the above-mentioned independence assumption) of the least-mean-squares adaptive algorithm. The authors analysis is also generalised in order to address the common case of coloured additive noise, an issue that is so far missing from the literature. The accuracy of the advanced model is verified through simulations.

http://iet.metastore.ingenta.com/content/journals/10.1049/el.2018.6675
Loading

Related content

content/journals/10.1049/el.2018.6675
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address